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The physics of plasma-based accelerators driven by short-pulse lasers in underdense plasma is

reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self-

modulated laser wakefield accelerator, plasma waves driven by multiple laser pulses, and highly-

nonlinear regimes. The properties of linear and nonlinear plasma waves are discussed, as well as

electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in

plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser

pulse diffraction, electron dephasing, laser pulse energy depletion, and beam loading limitations.

The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes

the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and plasmas with

preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions,

such as Raman, self-modulation, and hose instabilities, are discussed. Recent experimental results

are summarized.
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I. INTRODUCTION

Laser-driven plasma-based accelerators were originally
proposed by Tajima and Dawson (1979). John Dawson,
who passed away in 2001, was responsible for many of the
key developments in this field, including the plasma beat
wave accelerator, the laser wakefield accelerator, and the
photon accelerator (Joshi et al., 1984; Tajima and Daw-
son, 1979; Wilks et al., 1989). In addition, he was one
of the early pioneers of particle-in-cell simulation of plas-
mas (Birdsall et al., 1991; Dawson, 1983; Mori et al.,
1988), which is now a widely-used tool in the study of
plasma-based accelerators. During his lifetime, the field
of plasma-based accelerators has grown into a world-wide
research effort with ongoing experimental programs in
France, Germany, Korea, Japan, Taiwan, the UK, and
the United States, to name a few [see, e.g., the proceed-
ings of the Advanced Accelerator Concepts Workshop
(Conde and Eyberger, 2006)]. Much of this growth is
due to the rapid development of chirp-pulse amplification
(CPA) laser technology, pioneered by G. Mourou and his
colleagues (Maine et al., 1988; Mourou and Umstadter,
1992; Perry and Mourou, 1994; Strickland and Mourou,
1985), making readily available compact sources of in-
tense, high power, ultrashort laser pulses.

Laser-plasma accelerator experiments have demon-
strated acceleration gradients > 100 GV/m, accelerated
electron energies > 100 MeV, and accelerated charge
> 1 nC (Gahn et al., 1999; Leemans et al., 2002; Malka
et al., 2002; Modena et al., 1995; Nakajima et al., 1995;
Ting et al., 1997; Umstadter et al., 1996a). Prior to 2004,
however, the quality of the accelerated electron bunch
was less than desired. Typically, the accelerated bunch
was characterized by an exponential energy distribution,
with most of the electrons at low energy (< 10 MeV) and
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a long, exponentially small tail extending out to high en-
ergy (> 100 MeV). This dramatically changed in 2004,
when three groups reported (Faure et al., 2004; Geddes
et al., 2004; Mangles et al., 2004) the production of high
quality electron bunches characterized by a significant
charge (>∼ 100 pC) at high mean energy (∼ 100 MeV)
with a small energy spread (∼ few percent) and a low
divergence (∼ few degrees). The normalized transverse
emittance has also been measured and shown to be a few
µm-rad at 55 MeV (Fritzler et al., 2004). These high
quality electron beams were a result of a higher degree of
control of the laser and plasma parameters, an improve-
ment of diagnostic techniques, an extension of the laser
propagation distance through the plasma, and a greater
understanding of the underlying physics, in particular,
the importance of matching the acceleration length to
the dephasing length. Recently, using a plasma-channel-
guided laser, high-quality electron beams up to 1 GeV
have been experimentally demonstrated (Leemans et al.,
2006). High quality, GeV-class, electron bunches will en-
able a variety of applications of laser-plasma accelerators,
such as front end injectors for conventional accelerators
or drivers for compact, short-pulse radiation sources.

This review provides an overview of the physics and
issues relevant to laser-driven plasma-based accelerators,
including the plasma beat wave accelerator (PBWA)
(Amiranoff et al., 1995; Clayton et al., 1994; Ebrahim,
1994; Joshi et al., 1984; Kitagawa et al., 1992; Tajima and
Dawson, 1979), the laser wakefield accelerator (LWFA)
(Amiranoff et al., 1998; Dewa et al., 1998; Gorbunov and
Kirsanov, 1987; Sprangle et al., 1988; Tajima and Daw-
son, 1979), the self-modulated LWFA (Andreev et al.,
1992; Antonsen, Jr. and Mora, 1992; Coverdale et al.,
1995; Gordon et al., 1998; Joshi et al., 1981; Leemans
et al., 2001; Malka et al., 2001; Modena et al., 1995;
Moore et al., 1997; Sprangle et al., 1992; Wagner et al.,
1997), LWFAs driven by multiple laser pulses (Berezhi-
ani and Murusidze, 1992; Bonnaud et al., 1994; Dalla
and Lontano, 1994; Nakajima, 1992; Umstadter et al.,
1994), as well as other highly-nonlinear LWFA regimes
(Faure et al., 2004; Geddes et al., 2004; Malka et al.,
2002; Mangles et al., 2004; Pukhov and Meyer-ter-Vehn,
2002; Tsung et al., 2004). These configurations are shown
schematically in Fig. 1. The remainder of the introduc-
tion discusses the basic principles and limitations of laser-
driven acceleration in vacuum and gases. Section II dis-
cusses the basic models used to describe plasma wave
generation. Included is a discussion of nonlinear plasma
waves, wavebreaking, and plasma wave phase velocity,
as well as the trapping and acceleration of electrons by
the plasma wave. Section III describes the various laser-
driven plasma-based acceleration configurations, specifi-
cally, the LWFA, the PBWA, the self-modulated LWFA,
wakefields driven by multiple pulses, and the regime of
electron cavitation. Included is a brief discussion of
diffraction, dephasing, and pump depletion, which can
limit the single-stage energy gain. The injection of ul-
trashort electron bunches into plasma waves using laser

triggered injection or density gradients is discussed in
Sec. IV. Methods for optically guiding laser pulses in
plasmas are discussed in Sec. V, including relativistic
self-focusing, preformed density channels, ponderomotive
self-channel, and plasma wave effects. Section VI de-
scribes a few of the more relevant laser-plasma instabili-
ties, including backward and forward Raman scattering,
self-modulation, and laser-hosing. Throughout this re-
port recent experimental results are mentioned. A sum-
mary is presented in Sec. VIII, as well as a discussion of
future prospects for laser-driven plasma-based accelera-
tors.

A. Acceleration in plasma

Plasma-based accelerators are of great interest because
of their ability to sustain extremely large acceleration
gradients. The accelerating gradients in conventional
radio-frequency linear accelerators (linacs) are currently
limited to approximately 100MV/m, partly due to break-
down that occurs on the walls of the structure. Ion-
ized plasmas, however, can sustain electron plasma waves
with electric fields in excess of E0 = cmeωp/e, or

E0(V/m) ≃ 96
√

n0(cm−3), (1)

where ωp = (4πn0e
2/me)

1/2 is the electron plasma fre-
quency, n0 is the ambient electron number density, me

and e are the electron rest mass and charge, respec-
tively, and c is the speed of light in vacuum. Equa-
tion (1) is referred to as the cold nonrelativistic wave-
breaking field (Dawson, 1959). For example, a plasma
density of n0 = 1018 cm−3 yields E0 ≃ 100GV/m, which
is approximately three orders of magnitude greater than
that obtained in conventional linacs. Accelerating gra-
dients on the order of 100GV/m have been inferred
in plasma-based accelerator experiments (Gordon et al.,
1998; Malka et al., 2002).

In addition to extremely large accelerating gradients,
plasma-based accelerators have the potential to produce
extremely short electron bunches. The length of the ac-
celerating wave in a plasma-based accelerator is approx-
imately the plasma wavelength λp = 2πc/ωp = 2π/kp,
or

λp(µm) ≃ 3.3 × 1010/
√

n0(cm−3), (2)

e.g., λp ≃ 30µm for n0 = 1018 cm−3. A high-quality
electron bunch produced by a plasma-based accelerator
would have a bunch duration τb < λp/c, i.e., a duration
τb < 100 fs for n0 = 1018 cm−3 (Banerjee et al., 2005; Lee-
mans et al., 2003; van Tilborg et al., 2006). Laser-driven,
plasma-based accelerators, which are typically driven by
femtosecond laser pulses, are intrinsically sources of fem-
tosecond electron bunches.

An important parameter in the discussion of intense
laser-plasma interactions is the laser strength parameter
a0, defined as the peak amplitude of the normalized vec-
tor potential of the laser field, a = eA/mec

2. The laser



3

strength parameter is related to the peak laser intensity
I0 and power P = πr20I0/2 by I0 = (πc/2)(mec

2a0/eλ)
2,

which yields

a2
0 ≃ 7.3 × 10−19[λ(µm)]2I0(W/cm2), (3)

and P (GW) ≃ 21.5(a0r0/λ)
2, where a linearly polar-

ized laser field with a Gaussian radial profile is assumed,
e.g., a = a0 exp(−r2/r20) cos(kz − ωt)ex with r0 the
laser spot size at focus, λ = 2π/k the laser wavelength,
and ω = ck the laser frequency in vacuum. Further-
more, the peak laser electric field amplitude is given
by EL = mecωa0/e, i.e., EL(TV/m) ≃ 3.21a0/λ(µm).
Physically, a = p⊥/mec is the normalized transverse
“quiver” momentum of a plasma electron in the laser
field, as indicated by conservation of transverse canonical
momentum in the broad laser pulse [or one-dimensional
(1D)] limit (r0 ≫ λ). When a0

>∼ 1, the electron quiver
motion is highly relativistic and the laser-plasma inter-
action is nonlinear. Highly relativistic electron motion
(a0

>∼ 1) requires laser intensities I >∼ 1018 W/cm2 for
wavelengths of λ ≃ 1µm. Such intensities are routinely
produced by compact, solid-state laser systems based on
the technique of CPA.

B. Acceleration in vacuum and gases

The laser acceleration of electrons in vacuum and gases
is intrinsically limited by diffraction, electron slippage,
ionization, and the smallness of the laser wavelength
(Esarey et al., 1995; Sprangle et al., 1996a). In vacuum,
the motion of an electron in a laser field is determined
by the Lorentz force equation

dp̃/dct = ∂a/∂ct− (p̃/γ̃) × (∇× a), (4)

where p̃ is the electron momentum normalized to mec
and γ̃ = (1 + p̃2)1/2 is the relativistic Lorentz factor.
Roughly speaking, the first term on the right-hand side
of the above equation describes the linear response of
the electron to the electric field E of the laser and is re-
sponsible for “direct” laser acceleration; whereas the sec-
ond term describes the nonlinear response to the v × B

force and is responsible for “ponderomotive” laser accel-
eration. Typically, the axial (in the z-direction of laser
propagation) ponderomotive force is written as Fpz ≃
−(mec

2/γ̃)(∂/∂z)a2/2, assuming p̃⊥ = a⊥, which is ex-
act in 1D (i.e., r0 ≫ λ).

When a laser field propagating along the z-axis is
focused in vacuum, the laser spot size and inten-
sity evolve via rs = r0(1 + z2/Z2

R)1/2 and I =
I0(r

2
0/r

2
s) exp(−2r2/r2s), respectively, where ZR = kr20/2

is the Rayleigh length, and a fundamental Gaussian mode
is assumed. The finite laser spot size implies the existence
of an axial component of the electric field of the laser via
∇ · E = 0, i.e., Ez ∼ (1/kr0)E⊥. The amplitude of this
axial field can be very large, which suggests using the
axial field directly for laser acceleration, with an energy

gain for a relativistic (γ̃ ≫ 1) electron propagating along
the axis scaling as

∫

dz(vzEz). The phase velocity, how-
ever, of the optical field along the axis is greater than c
and is approximately vp/c ≃ 1+1/(kZR) near the focus.
Since vp > c, electrons with vz

<∼ c will phase slip with
respect to the accelerating field and decelerate. This will
occur over a dephasing length Ld, which for highly rela-
tivistic electrons is ∼ ZR, i.e., the dephasing length is on
order of the diffraction length.

This phase slippage argument forms the basis for
the so-called Lawson-Woodward (LW) theorem (Lawson,
1979; Palmer, 1980; Woodward, 1947), which states that
under certain restrictive conditions no net electron en-
ergy gain is possible using laser fields. The LW theorem
assumes (i) the region of interaction is infinite, (ii) the
laser fields are in vacuum with no walls or boundaries
present, (iii) the electron is highly relativistic (vz ≃ c)
along the acceleration path, (iv) no static electric or
magnetic fields are present, and (v) nonlinear effects
(e.g., ponderomotive and radiation reaction forces) are
neglected.

One or more of the assumptions of LW theorem must
be violated in order to achieve a nonzero net energy
gain. For example, one can introduce optics to limit
the laser-electron interaction to approximately a region
of length 2ZR about the focus, such that minimal phase
slippage occurs (Esarey et al., 1995; Huang and Byer,
1996; Plettner et al., 2005). The maximum energy gain
due to direct acceleration by the Ez field is then given by
∆W (MeV) ≃ 31

√

P (TW), where a first-order Laguerre-
Gaussian mode has been assumed (Esarey et al., 1995).
Although substantial energy gains are possible with high
laser power, this is problematic in practice, since this
method requires that optics be placed near the focus and
are susceptible to laser damage at high intensity. Fur-
thermore, the electron beam must pass through a small
aperture in the optics, which can limit the amount of
charge that can be accelerated (Sprangle et al., 1996a).

Alternatively, finite energy gains can be achieved by in-
troducing a background of gas into the interaction region,
as in the inverse Cherenkov accelerator (Kimura et al.,
1995). The gas can reduce the phase velocity of the laser
field to less than c, reducing the slippage. Furthermore,
in principle, diffraction can be overcome by relying on
optical guiding (self-focusing) in the gas (Sprangle et al.,
1996b). Nevertheless, ionization of the gas, which oc-
curs at a relatively low laser intensity ∼ 1014 W/cm2

(for λ ≈ 1 µm) and increases the phase velocity, remains
a fundamental limitation to the accelerating field in gas-
filled devices.

In addition to direct laser acceleration, finite energy
gains can also result from the nonlinear or ponderomo-
tive force. Since the ponderomotive force scales inversely
with electron energy and proportional to the laser inten-
sity, Fp ∼ (1/γ̃)∇a2, this mechanism is most efficient
at low electron energies and high laser intensities. Sim-
ulations (Quesnel and Mora, 1998; Stupakov and Zolo-
torev, 2001) and experiments (Malka et al., 1997) have
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shown that by focusing a high intensity laser pulse onto
a low density gas jet (essentially, a source of electrons at
rest), ponderomotive acceleration can result in the pro-
duction of electrons with energies in the range of a few
MeV with a large energy spread and a high degree of
scattering. Simulations (Pang et al., 2002) indicate that
when a moderate energy electron beam intersects with a
very intense laser pulse at a small angle, a signification
fraction of the electrons can be accelerated to energies
in excess of 100 MeV (for a ∼ 10) through a combi-
nation of direct and ponderomotive acceleration. Other
ponderomotive acceleration schemes include the vacuum
beat wave accelerator (Esarey et al., 1995), which re-
lies on the ponderomotive force of the beat wave pro-
duced by two co-propagating laser pulses, and the inverse
free-electron laser (Kimura et al., 2001; Liu et al., 1998;
Musumeci et al., 2005), which relies on the beat wave
produced by a laser pulse propagating through a mag-
netic wiggler field. Again, a major limitation to these
schemes is the 1/γ̃ scaling of the ponderomotive force.

A fundamental limitation to all concepts that rely on
electron acceleration through the direct interaction (lin-
ear or nonlinear) with the laser field is the smallness of
the laser wavelength, typically on the order of a micron.
For example, a first-order Laguerre-Gaussian mode has a
quarter wavelength phase region for which the laser field
is both accelerating and focusing. To accelerate an elec-
tron bunch while maintaining a small energy spread and
emittance, it is desirable that a high quality bunch be in-
jected into the proper phase region of the laser field with
a bunch length small compared to a λ/4 (corresponding
to 0.8 fs for λ = 1 µm). Conventional accelerators typ-
ically produce electron bunches with durations >∼ 1 ps.
One possibility may be to pre-bunch a conventional elec-
tron bunch at the laser wavelength using an inverse free-
electron laser, as has been experimentally demonstrated
(Liu et al., 1998), and use this as an injector into a second
stage of a laser accelerator (Kimura et al., 2001).

Plasma-based accelerators can overcome many of the
fundamental limitations that restrict laser acceleration
in vacuum and gases. For example, ionization and
breakdown is not a limitation, since the plasma can be
fully pre-ionized. Diffraction can be overcome through
self-focusing and with preformed plasma channels. In
plasma-based accelerators, acceleration is the result of
the axial field of the plasma wave and not the laser field
directly. The phase velocity of the plasma wave is typ-
ically equal to the group velocity of the laser pulse and
is less than c. Although the plasma wave is excited by
the ponderomotive force of the laser field, the 1/γ̃ scal-
ing of the ponderomotive force is not a limitation, since
for the plasma electrons γ̃ ∼ 1. In effect, the plasma
acts as a transformer, converting the transverse laser field
into the axial electric field of the plasma wave. Further-
more, the accelerating wavelength is the plasma wave-
length λp, which is typically 10–1000 times larger than
the laser wavelength, and in many cases equal to the
laser pulse length. The injection of ultrashort electron

bunches into a single period of a plasma wave is possible
using laser injection methods (see Sec. IV.C.2). Plasma-
based acceleration methods are, however, subject to their
own intrinsic limitations, such as restrictions arising from
electron dephasing, pump depletion, and, in some cases,
laser-plasma instabilities.

II. PLASMA WAVES AND ACCELERATION

Calculation of the plasma wakefields (driven elec-
tron plasma waves) generated by nonevolving drive laser
beams is straightforward. Analytical solutions exist in
the three-dimensional (3D) linear regime and in the 1D
nonlinear regime. In the 3D nonlinear regime, the use
of numerical codes is usually required. The full prob-
lem, which includes the self-consistent evolution of the
drive laser beams, is sufficiently complicated to require
numerical calculation. Various aspects of the propa-
gation and transport of the drive beams will be dis-
cussed in subsequent sections. Before discussing spe-
cific laser-plasma-based accelerator configurations (e.g.,
PBWA, LWFA, self-modulated LWFA, etc.), the physical
forces that drive wakefields (i.e., space charge and pon-
deromotive forces) and the mathematical models used to
describe wakefield generation will be briefly discussed.
In the following, it is convenient to use the normalized
electrostatic φ = eΦ/mec

2 and vector a = eA/mec
2 po-

tentials.

A. Ponderomotive force

In laser-driven plasma-based accelerators, wakefields
are driven via the ponderomotive force. The pondero-
motive force (Kruer, 1988) can be derived by considering
the electron fluid momentum equation in the cold fluid
limit,

dp/dt = −e[E + (v × B)/c], (5)

where p and v are the plasma fluid element momentum
and velocity, respectively, and d/dt = ∂/∂t + (v · ∇).
The electric and magnetic fields of the laser can be writ-
ten as E = −∂A/∂ct and B = ∇× A, where the vector
potential of the laser is polarized predominately in the
transverse direction, e.g., A = A0 cos(kz−ωt)e⊥. In the
linear limit |a| = e|A|/mec

2 ≪ 1, the leading order elec-
tron fluid motion is the quiver momentum pq = meca,
as indicated by ∂pq/∂t = −eE. Letting p = pq + δp, the
second order motion is given by

dδp/dt = −[(pq/me) · ∇]pq − pq × (c∇× a)

= −mec
2∇(a2/2).

(6)

Hence, Fp = −mec
2∇(a2/2) is the 3D ponderomotive

force in the linear limit (a2 ≪ 1). The ponderomotive
force can also be viewed as the radiation pressure (i.e.,
the gradient of the electromagnetic energy density).
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In the 1D nonlinear regime, conservation of canonical
momentum implies u⊥ = a⊥, i.e., a⊥ is the normalized
quiver momentum. Hence, in 1D, the nonlinear pondero-
motive force is given by Fpz = −(mec

2/2γ)∂a2
⊥
/∂z. In

the 3D nonlinear regime, the leading order transverse
motion of the electron fluid is still the quiver motion,
u⊥ ≃ a⊥, provided that the laser pulse is propagating in
an underdense plasma and has a sufficiently broad spot
size, r0 >∼ λp ≫ λ. Defining δu = u − a, the fluid mo-
mentum equation can be written as (Chen and Sudan,
1993; Esarey et al., 1993a; Sprangle et al., 1992)

∂δu/∂ct = ∇(φ− γ), (7)

which is exact under the assumption that the quantity
∇×δu is initially (prior to the passage of the laser pulse)
zero. Here, ∇φ is the space-charge force and ∇γ rep-
resents the generalized nonlinear ponderomotive force,
FpN = −mec

2∇γ.

B. Linear plasma waves

In the linear (a ≪ 1), 3D regime, wakefield genera-
tion can be examined using the cold fluid equations, i.e.,
the Poisson equation, the continuity equation, and the
fluid momentum equation. For example, the plasma wave
generated in an initially uniform plasma is described
by (Esarey et al., 1989; Gorbunov and Kirsanov, 1987;
Sprangle et al., 1988)

(

∂2/∂t2 + ω2
p

)

δn/n0 = c2∇2a2/2, (8)

(∂2/∂t2 + ω2
p)φ = ω2

pa
2/2, (9)

where δn/n0 = (n−n0)/n0 is the normalized density per-
turbation associated with the electrostatic wake φ in the
limit a2 ≪ 1. The solutions for the density perturbation
(|δn/n0| ≪ 1) and electric field of the wake are given by

δn/n0 = (c2/ωp)

∫ t

0

dt′ sinωp(t− t′)∇2a2(r, t′)/2, (10)

E/E0 = −c
∫ t

0

dt′ sinωp(t− t′)∇a2(r, t′)/2. (11)

Equations (10) and (11) describe plasma waves generated
at the frequency ωp and are valid for E ≪ E0, where
E0 = mecωp/e is the cold nonrelativistic wavebreaking
field Eq. (1). Solutions to Eq. (10) indicate that wake-
fields will be generated most efficiently when the enve-
lope scale length, which characterizes the axial gradient
in the normalized laser intensity a2, is on the order of
the plasma wavelength λp = 2πc/ωp. The radial extent
of the wake is on the order of the laser spot size rs.

In addition to the axial wakefield Ez, transverse wake-
fields Er and Bθ will be generated. The transverse wake-
fields are related to the axial wakefield by the Panofsky-
Wenzel theorem (Keinings and Jones, 1987; Panofsky and

Wenzel, 1956), ∂Ez/∂r = ∂(Er − Bθ)/∂(z − ct). A rela-
tivistic particle with axial velocity vz ≃ c which is being
accelerated by a wakefield with phase velocity vp ≃ c
will experience a radial force proportional to Er − Bθ.
Notice that if Ez ∼ exp(−2r2/r2s) cos[kp(z − ct)], then
Er −Bθ ∼ (4r/kpr

2
s) exp(−2r2/r2s) sin[kp(z−ct)] and the

radial force is zero along the axis. Typically, for an elec-
tron displaced from the axis, there is a phase region of the
wake of width kp|∆(z−ct)| = π/4 for which a relativistic
electron will experience simultaneous axial accelerating
and radial focusing forces.

Equations (8)–(11) are valid to order ∼ a2 assuming
a ≪ 1. Applying a perturbation expansion of the fluid
quantities in powers of a, higher-order corrections to the
density and field may be computed (Gorbunov et al.,
1997). In particular a quasi-static (varying on the time
scale ∼ ω−1

p ) magnetic field that scales as ∼ a4 is gener-
ated in an initially uniform plasma, given by (Gorbunov
et al., 1996, 1997)

(

∂2
ct −∇2 + k2

p

)

B/E0 = −k−3
p ∇ ×

[

(∇∂ctφ)∇2φ
]

,
(12)

behind the drive laser, where φ is given by Eq. (9).

The linear response of plasma wave excitation in a
plasma channel (transverse plasma inhomogeneity) has
been investigated by Andreev et al. (1997). Wake exci-
tation in a plasma channel also leads to damping of the
plasma wave (Andreev et al., 1997; Shvets and Li, 1999).

C. Nonlinear plasma waves

In the linear regime, E ≪ E0, the plasma wave is a
simple sinusoidal oscillation with frequency ωp and an
arbitrary phase velocity vp (the phase velocity is de-
termined by the driver), e.g., φ = φ0 cos[ωp(z/vp − t)].
When E >∼ E0, the plasma wave becomes highly non-
linear. Wakefield generation in the nonlinear 1D regime
can be examined by assuming that the drive beam is
nonevolving, i.e., the drive beam is a function of only the
coordinate ξ = z−vpt, where vp ≤ c is the phase velocity
of the plasma wave. For laser drivers, vp ≃ vg, where vg is
the laser pulse group velocity. The quasi-static approx-
imation (Sprangle et al., 1990a,b) can be applied such
that the plasma fluid quantities are also assumed to be
functions only of the co-moving variable ξ. The 1D limit
applies to broad drivers, kpr⊥ ≫ 1, where r⊥ is the char-
acteristic radial dimension of the drive beam. Using the
fluid momentum and continuity equations,

u⊥ − a⊥ = 0, (13)

γ − βpuz − φ = 1, (14)

n (βp − βz) = βpn0, (15)

the Poisson equation ∂2φ/∂ξ2 = k2
p(n/n0−1) can be writ-

ten as (Berezhiani and Murusidze, 1992; Esarey et al.,
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1993b; Teychenné et al., 1993)

k−2
p

∂2φ

∂ξ2
= γ2

p

{

βp

[

1 − (1 + a2)

γ2
p(1 + φ)2

]−1/2

− 1

}

, (16)

where γp = (1−β2
p)−1/2 and βp = vp/c. The axial electric

field of the wake is given by Ez = −E0∂φ/∂ξ. In the limit
γ2

p ≫ 1, Eq. (16) simplifies to (Berezhiani and Murusidze,
1990; Bulanov et al., 1989; Sprangle et al., 1990a,b)

k−2
p

∂2φ

∂ξ2
=

(1 + a2)

2(1 + φ)2
− 1

2
. (17)

Analytical solutions in terms of elliptic integrals can
be found for square laser pulse profiles (Berezhiani and
Murusidze, 1990; Bulanov et al., 1989; Sprangle et al.,
1990a,b). As the plasma wave amplitude becomes non-
linear, the plasma wave steepens and its period lengthens.

In the region behind the drive beam, a2 = 0, an anal-
ysis of Eq. (16) indicates that the electrostatic potential
oscillates between φmin ≤ φ ≤ φmax and the axial electric
field oscillates between −Emax ≤ E ≤ Emax. The values
φmin and φmax, denoted by φm, are given by (Esarey and
Pilloff, 1995)

φm = Ê2
max/2 ± βp

[

(1 + Ê2
max/2)2 − 1

]1/2

, (18)

where Êmax = Emax/E0 and the ± give φmax and φmin,
respectively. For Emax/E0

>∼ 1, Eq. (16) indicates that
the electric field departs from a simple sinusoidal form
(Akhiezer and Polovin, 1956; Berezhiani and Murusidze,
1990; Bulanov et al., 1989; Sprangle et al., 1990a,b). In
particular, the electric field exhibits the characteristic
“sawtooth” profile associated with wave steepening and
the density oscillations become highly peaked (as illus-
trated in Fig. 5 of Sec. III.A). Furthermore, the period
of the nonlinear plasma wave increases as the amplitude
increases. The nonlinear plasma wavelength in the limit
γp ≫ 1 is given by (Berezhiani and Murusidze, 1990;
Bulanov et al., 1989; Sprangle et al., 1990a,b)

λNp = λp

{

1, Emax/E0 ≪ 1,

(2/π)Emax/E0, Emax/E0 ≫ 1
(19)

where Emax is the peak electric field of the plasma wave
and λp = 2π/kp = 2πc/ωp. For a square laser pulse
profile of optimal length for plasma wave excitation (L =
λNp/2), Emax = a2/2/(1+ a2)1/2 for a linearly polarized
laser.

The lengthening of the plasma wave period can be im-
portant in plasma-based accelerators. For example, in
the PBWA, the plasma wave is driven at a constant
beat frequency ∆ω = ω1 − ω2 ≃ ωp. As the wave
grows, however, the effective plasma frequency decreases,
ωp,eff = 2πc/λNp. Hence, the driver (i.e., the laser beat
wave) becomes out of phase with the nonlinear plasma
wave. This leads to saturation of the plasma wave am-
plitude in the PBWA (Rosenbluth and Liu, 1972; Tang

et al., 1985). Alternatively, if the plasma wave is to be
driven to large amplitudes by a series of individual laser
pulses, the change in the nonlinear plasma period can
affect the optimal spacing between pulses as well as the
optimal duration of the pulses (Umstadter et al., 1994).

In the two-dimensional (2D) and 3D nonlinear regimes,
numerical calculations are usually required. One possi-
ble approach is to use a full nonlinear plasma fluid model
(Shadwick et al., 2002) or a nonlinear quasi-static fluid
model (Esarey et al., 1993a; Sprangle et al., 1992), which
is discussed in Sec. V. An alternative (more computa-
tionally expensive) approach for wakefield calculation is
to use 2D and 3D particle simulations (Mora and Anton-
sen, Jr., 1997; Pukhov and Meyer-ter-Vehn, 1996; Ren
et al., 2000; Tzeng et al., 1996).

The increase in the plasma wavelength with increas-
ing wave amplitude has an additional effect on nonlin-
ear 2D plasma waves. Consider a plasma wave which is
driven more strongly on-axis than it is off-axis, e.g., a
laser driven accelerator, where the laser intensity peaks
on-axis and typically has a Gaussian radial profile. On-
axis, the plasma wave amplitude is maximum and, in the
nonlinear regime, the plasma wavelength on-axis is larger
than it is off-axis. Thus the plasma wavelength varies
as a function of radius λNp(r). This causes the wave-
fronts of the plasma wave to become curved and take on
a “horseshoe” shape. For a plasma wave of fixed ampli-
tude, the farther back within the plasma wave train, the
more curved the plasma wave front, i.e., after ℓ periods,
the phase front at large radii is located at ℓλp, whereas
on-axis, the phase front is located at ℓλNp(r = 0). This
effect has been observed in 2D nonlinear fluid simulations
(Esarey et al., 1993a; Krall et al., 1993; Sprangle et al.,
1992) and 2D particle simulations (Bulanov et al., 1995,
1997; Decker et al., 1994). Curvature of the plasma wave-
fronts can lead to transverse wavebreaking, as discussed
in Sec. II.D.

D. Wavebreaking

Plasmas are capable of supporting large amplitude,
electrostatic waves with phase velocities near the speed
of light. In the linear regime, the electric field of a
plasma wave in a plasma-based accelerator has the form
Ez = Emax sin[ωp(z/vp − t)], where vp ≃ c is the
phase velocity. The peak field amplitude Emax of the
plasma wave can be estimated from the Poisson equation
∇·E = 4πe(n0−ne). A simple estimate for the maximum
field amplitude is given by assuming all of the plasma
electrons are oscillating with a wavenumber kp = ωp/c.
This gives (ωp/c)Emax = 4πen0, or Emax = E0, where
E0 = cmeωp/e is the cold nonrelativistic wavebreaking
field (Dawson, 1959).

It is possible for the maximum amplitude of a nonlinear
plasma wave to exceed the value E0. Using the nonlinear,
relativistic, cold fluid equations in 1D, it is possible to
show that the maximum amplitude of a periodic plasma
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wave is given by (Akhiezer and Polovin, 1956; Esarey and
Pilloff, 1995)

EWB =
√

2(γp − 1)1/2E0, (20)

which is referred to as the cold relativistic wavebreak-
ing field, where γp = (1 − v2

p/c
2)−1/2 is the relativistic

Lorentz factor associated with the phase velocity of the
plasma wave. The plasma wave phase velocity is ap-
proximately the group velocity of the laser, γp ≃ ω/ωp,
where ω is the frequency of the laser. As an example,
consider a laser-driven accelerator with a plasma density
of n0 ≃ 1017 cm−3. For a laser wavelength of 1 µm,
γp ≃ 100 and EWB ≃ 24E0. Note that, when the plasma
wave field amplitude approaches EWB, Eq. (18) implies
(1+φ) → 1/γp, and, from Eq. (16), the cold plasma den-
sity becomes singular n→ ∞. This singularity indicates
a breakdown of the cold fluid equations. Cold fluid theory
will be a good approximation near the wavebreaking field
in the limit γpβth ≪ 1, where cβth = (kBT0/m)1/2 is the
thermal velocity spread of the electrons, with T0 the ini-
tial electron plasma temperature and kB the Boltzmann
constant. In a warm plasma, the electron distribution
has a thermal spread about its mean fluid velocity, and
thermal effects (i.e., pressure) will reduce the maximum
plasma wave amplitude, or wavebreaking field.

In the limit of very slow phase velocity waves, βth ≪
βp ≪ 1, corrections to the cold nonrelativistic wavebreak-
ing field E0 have been calculated using a warm fluid
model by Coffey (1971). In the ultra-relativistic phase
velocity βp = 1 limit, the warm wavebreaking field was
found (Katsouleas and Mori, 1989; Rosenzweig, 1988) to

be EWB ∼ E0/β
1/2
th . This expression for EWB is valid

for γpβth ≫ 1, e.g., for an ultra-relativistic (βp = 1) par-
ticle beam driver. For laser-driven plasma waves, how-
ever, typically plasma wave phase velocities are γp ∼ 10–
100 and initial plasma temperatures are β2

thmc
2 ∼ 10 eV

(Durfee III et al., 1995; Volfbeyn et al., 1999). Therefore,
a laser-plasma accelerator typically satisfies γpβth

<∼ 1,
and, hence, the above expression for Eth does not apply.

A warm, relativistic fluid theory has been formu-
lated to describe wavebreaking in all regimes of interest,
including that of laser-plasma accelerators.(Schroeder
et al., 2005) This theory assumes the quasi-static approx-
imation (i.e., a non-evolving wakefield driver) in 1D and
assumes kBT < mc2 (i.e., nonrelativistic temperatures).
Using warm fluid momentum and continuity equations,
the Poisson equation can be written as (Schroeder et al.,
2005)

∂2

∂ξ2

[

γ⊥(1 − βϕwz)

(1 − w2
z)1/2

+
3

2
β2

th

(1 − βϕwz)(1 − w2
z)

1/2

γ⊥(1 − β−1
ϕ wz)2

]

=
k2

pwz

βϕ − wz
, (21)

where wz is the warm fluid velocity. An example of this
warm fluid theory is shown in Fig. 6, which plots the
plasma density n/n0 (dotted curve), plasma wave electric

field Ez/E0 (solid curve), and plasma temperature T/T0

(dashed curve) as a function of ξ = z − vpt excited by a
Gaussian laser pulse a = a0 exp(−ξ2/4L2

RMS) with nor-
malized peak intensity a0 = 2 and intensity RMS length
kpLRMS = 1 for γp = 10. The plasma temperature under-
goes periodic oscillations in the wake owing to compres-
sion of the plasma density (Esarey et al., 2007; Schroeder
et al., 2005; Shadwick et al., 2004, 2005). The temper-
ature evolution (to lowest order in the small parameter
kBT/mc

2 < 1) is given by T = [(n/n0)
2(1 − w2

z)]T0.
The wavebreaking limit, defined as the maximum ampli-
tude of an electrostatic standing wave (a function of only
ξ = z−vpt) allowed within the warm fluid model, can be
calculated using Eq. (21). For example, the lowest-order
corrections (in the limit γpβth < 1) to the cold relativistic
wavebreaking field Eq. (20) are (Schroeder et al., 2005)

(EWB/E0)
2 ≃ 2γ⊥(γp − 1)

− 2βpγp

[

4

3

(

3β2
pγ

2
pγ

2
⊥
β2

th

)1/4 −
(

3γ2
pβ

2
th

)1/2
]

. (22)

Equation (22) includes the possible presence of an in-
tense laser field (e.g., the self-modulated LWFA), with
γ2
⊥

= 1 + a2/2. The wavebreaking field is larger in the
presence of a laser field. For a plasma wave behind the
drive laser pulse γ⊥ = 1. In the warm fluid theory of
wavebreaking there is no shock formation (i.e., the den-
sity remains finite) at the wavebreaking limit. For fields
larger that Eq. (22) no traveling wave solutions exist.

Figure 7 shows the wavebreaking field, ÊWB = EWB/E0

(solid curve), versus initial temperature βth with γp = 10
and γ⊥ = 1. The dotted curve is the ultra-relativistic
result (βp = 1), and the dashed line is the cold limit
(βth = 0). Note that for typical short-pulse laser-plasma-
interactions, β2

th ∼ 10−4.
The above expressions for the wavebreaking field were

based on 1D theories. Wavebreaking in 3D has not been
thoroughly investigated and general expressions for the
maximum field amplitude are not known. Particle-in-cell
simulations (Bulanov et al., 1995; Decker et al., 1994;
Pukhov and Meyer-ter-Vehn, 2002; Tsung et al., 2004)
in 2D and 3D in the highly-nonlinear cavitated regime
have demonstrated the generation of plasma waves with
amplitudes in excess of E0. The wake generation in the
blowout regime is discussed in Sec. III.E. Simulations
(Krall et al., 1993; Shadwick et al., 2002) based on non-
linear, 2D fluid equations have shown wave amplitudes
in excess of E0.

The transverse structure of the plasma wave and cur-
vature of the wake phase fronts, as described in Sec. II.C,
can lead to 2D wavebreaking (Bulanov et al., 1997).
Specifically, when the curvature radius of the phase front
is on the order of the electron fluid displacement, the
regular structure of the plasma wave is destroyed (i.e.,
2D wavebreaking) and particle trapping may occur. For
a fixed amplitude nonlinear 2D wake (i.e., neglecting
wake damping), 2D wavebreaking will always occur at
a sufficiently long distance behind the driver. The larger
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the wake amplitude, the shorter the distance behind the
driver is the onset point of 2D wavebreaking. A similar
effect can occur for linear (or nonlinear) plasma waves in
a plasma channel. In a plasma channel, the plasma den-
sity is minimum on axis, hence the plasma wavelength is
longer on-axis than off-axis. This leads to wake wavefront
curvature, and the curvature increases with distance be-
hind the driver until the point of 2D wavebreaking is
reached.

E. Electron acceleration and dephasing

Consider an electron accelerated along the z-axis
(laser-propagation axis) by a linear electrostatic plasma
wave of the form Ez = Emax sinωp(z/vp − t). As the
electron is accelerated, its velocity will increase and ap-
proach the speed of light, vz → c. If the phase veloc-
ity of the plasma wave is constant with vp < c, the
electrons will eventually outrun the plasma wave and
move into a phase region of the plasma wave which is
decelerating. This limits the energy gain of the elec-
tron in the plasma wave and is commonly referred to
as electron dephasing. The dephasing length Ld is de-
fined as the length the electron must travel before it
phase slips by one-half of a period with respect to the
plasma wave. For a highly relativistic electron, vz ≃ c,
the dephasing time td is given by ωp(c/vp − 1)td = π,
i.e., Ld = ctd ≃ γ2

pλp, assuming γp ≫ 1. The maxi-
mum energy gain after a dephasing length (Joshi et al.,
1984; Tajima and Dawson, 1979) is given approximately
by Wmax ≃ eEmaxLd ≃ 2πγ2

p(Emax/E0)mec
2, assuming

E < E0.
In a 1D plasma wave, electron trapping, acceleration,

and dephasing can be studied by examining the electron
orbits in phase space (p̃, ψ), where p̃ is the normalized
momentum and ψ = kpξ = kp(z − vpt) is the phase.
In the linear regime, the plasma wave is described by
a sinusoidal electrostatic potential φ = φ0 cosψ, where
φ0 = Emax/E0 is the amplitude. The phase region
−π < ψ < 0 is accelerating. Consider an electron in-
jected into the plasma wave with vz < vp at ψ = 0. Ini-
tially, the electron is slipping backward with respect to
the plasma wave. If the initial electron velocity is too low,
the electron does not gain sufficient energy and vz < vp

at ψ = −π. Hence, the electron would be untrapped
and would continue to slip backward through the plasma
wave. If, however, the electron has a sufficiently high ini-
tial velocity such that vz > vp as the electron approaches
ψ → −π, the electron will be trapped and execute closed
orbits in the −π < ψ < π phase region. The separatrix,
which separates the region of trapped and untrapped or-
bits in phase space, is shown schematically in Fig. 2 for
a small amplitude plasma wave.

The motion of a test electron in a 1D nonlinear plasma
wave is described by the Hamiltonian (Esarey and Pilloff,
1995)

H(p̃, ψ) = γ̃ − βpp̃− φ(ψ), (23)

where H(p̃, ψ) = constant along a given electron orbit
and φ = φ(ψ) is the solution to Eq. (16), which oscil-
lates between φmin ≤ φ ≤ φmax and is related to Emax

by Eq. (18). In particular, the separatrix γ̃s(ψ) charac-
terizing the test electron orbits in (γ̃, ψ) phase space is
given by H(γ̃s, ψ) = H(γp, ψmin), where φ(ψmin) = φmin.

Figure 3 shows several separatrices for γp = 20 and for
different values of the plasma wave amplitude, character-
ized by the parameter ǫ, where φmax = (2γ2

p −1)ǫ/γp−1,
for ǫ = 0.03, 0.04, 0.1, 0.3 and 0.9 (ǫ = 1 corre-
sponds to the cold wavebreaking limit). This corre-
sponds to values of the peak electric field Emax given
by Emax/E0 = 0.18, 0.47, 1.5, 3.2, and 5.8, respec-
tively. The value ǫ = 0.03 corresponds to the inner-
most curve and ǫ = 0.9 corresponds to the outermost
curve. These curves were obtained (Esarey and Pilloff,
1995) by plotting H(γ̃s, ψ) = H(γp, ψmin) after numeri-
cally solving Eq. (16) for φ = φ(ψ) with the initial con-
ditions ∂φ/∂ξ = 0 and φ = φmax at ψ = 0. The width of
the separatrix ∆ψs corresponds to the nonlinear plasma
wavelength, λNp = ∆ψs/kp, given by Eq. (19). As the
plasma wave amplitude increases, the nonlinear wave-
length increases.

The maximum energy γ̃max and minimum energy γ̃min,
denoted by γ̃m, for an electron on the separatrix are given
by (Esarey and Pilloff, 1995)

γ̃m = γp(1 + γp∆φ) ± γpβp

[

(1 + γp∆φ)2 − 1
]1/2

, (24)

where ∆φ = φmax−φmin, i.e., ∆φ = 2βp[(1+ Ê2
max/2)2−

1]1/2, as indicated by Eq. (18). In the limits γp∆φ ≫ 1
and γ2

p ≫ 1, γmax ≃ 2γ2
p∆φ and γmin ≃ ∆φ/2+1/(2∆φ).

In particular, the maximum energy of a trapped electron
is given by (Esarey and Pilloff, 1995)

γ̃max ≃ 2γ2
p

{

Ê2
max, for Ê2

max ≫ 2,

2Êmax, for 2 ≫ Ê2
max ≫ 1/4γ2

p,
(25)

where Êmax = Emax/E0. The limit Ê2
max ≪ 2 cor-

responds to the well-known limit for linear, sinusoidal
plasma waves (Joshi et al., 1984; Mora, 1992; Tajima

and Dawson, 1979). When Ê2
max ≫ 2, however, γ̃max ≃

2γ2
pÊ

2
max, which implies that higher electron energies can

be obtained for electrons trapped in nonlinear plasma
waves. The nonlinear regime where Êmax > 1 has been
observed in simulations of the self-modulated LWFA (Bu-
lanov et al., 1995; Decker et al., 1994; Krall et al., 1993)
and laser wakefields driven by multiple pulses (Bonnaud
et al., 1994; Nakajima, 1992; Umstadter et al., 1994).
As for the maximum field in a cold plasma (ǫ = 1,
Emax = EWB), Eq. (24) indicates that (Esarey and
Pilloff, 1995) γ̃max = 4γ3

p − 3γp.
A rough estimate for the dephasing length is given by

Wmax = mec
2γ̃max = eEmaxLd. This yields

Ld = γ2
pλNp

{

2/π, Êmax ≪ 1,

1/2, Êmax ≫ 1,
(26)
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where λNp is given by Eq. (19). The actual dephasing
length (Teychenné et al., 1994b) requires the simultane-
ous solution of the equation of motion and Eq. (16).

As an example, consider a LWFA with n0 = 2.8 ×
1018 cm−3 and λ = 1 µm, i.e., γg ≃ γp ≃ 20 and

E0 ≃ 160 GV/m. In the limit Ê2
max ≫ 2, Eq. (25)

yields Wmax ≃ 400Ê2
max, where Wmax ≃ mec

2γ̃max. At
the maximum field in a cold plasma, EWB ≃ 6.2E0 and
Wmax ≃ 16 GeV. Notice that γ̃max ≃ 4γ3

pEmax/EWB, as-

suming γ2
p ≫ 1 and γp(Emax/EWB)2 ≫ 1. Hence, for

a fixed value of Emax/EWB, γ̃max ∝ n
−3/2
0 and substan-

tially higher single-stage energy gains can be achieved by
operating at lower densities, albeit with longer accelera-
tion stages.

Note that the above results are obtained from 1D the-
ory and assume a constant amplitude plasma wave. An
evolving plasma wave amplitude and 2D effects could al-
ter these results. For example, Mora (1992) has shown
that the effects of laser diffraction can lead to a more
restrictive trapping condition for linear plasma waves.

F. Plasma wave phase velocity

The phase velocity of the plasma wave is important
for determining the minimum injection energy, the max-
imum energy gain, and the dephasing length. Neglecting
the evolution of the drive beam as it propagates, the
phase velocity of the plasma wave is equal to the group
velocity of the drive laser.

In the linear regime, the group velocity of a laser pulse
in a plasma can be determined from the 1D dispersion
relation, ω2 = c2k2+ω2

p. This yields vg = c(1−ω2
p/ω

2)1/2

and γg = (1 − v2
g/c

2)−1/2 = ω/ωp. Nonlinear corrections
to the group velocity in 1D have been analyzed by Decker
and Mori (1994). Note that, in the nonlinear regime the
linear relation vg = c2k/ω is no longer valid. In the
long pulse, underdense ωp/ω ≪ 1 limit, the nonlinear
group velocity was found by Decker and Mori (1994) to
be (ω/ωp)[(γ⊥ + 1)/2]1/2, where γ⊥ = (1 + a2

0/2)1/2 is
the relativistic Lorentz factor associated with the quiver
motion of the electrons in the laser field.

The group velocity of a laser pulse is also reduced by
3D effects. For example, consider a laser pulse in vac-
uum undergoing Rayleigh diffraction. The evolution of
the spot size (or radius) of a Gaussian laser beam evolves
according to rs = r0(1 + z2/Z2

R)1/2, where r0 is the min-
imum spot size at the focal point z = 0, and ZR = kr20/2
is the Rayleigh length. In effect, the photons are travel-
ing at approximately a diffraction angle θd = r0/ZR with
respect to the z-axis. Hence, the axial group velocity is
reduced by vg ≃ c cos θd ≃ c(1 − θ2d/2). A more detailed
calculation indicates that, in the linear regime, the 3D
group velocity is given by (Esarey and Leemans, 1999)

γg ≃ (ω2
p/ω

2 + 2c2/ω2r20)
−1/2. (27)

In effect, the linear 3D dispersion relation is given by

ω2 − c2k2 = ω2
p + 2c2/r20 (for a matched laser pulse in a

plasma channel, ω2 − c2k2 = ω2
p + 4c2/r20). For tightly

focused laser pulses, this 3D correction can significantly
limit the group velocity. As an example, consider a laser
pulse with a λ = 1 µm wavelength and r0 = 10 µm spot
size, propagating in a plasma of density n0 = 1016 cm−3;
in 1D, γg ≃ 330, however, the finite spot size reduces the
group velocity such that γg ≃ 44.

Distortions of the pulse driving the plasma wave can
also affect the plasma wave phase velocity. In the LWFA
in the 1D limit, it has been shown that the wake phase
velocity is approximately equal to the group velocity as-
sociated with the position of the peak of intensity profile
(Decker and Mori, 1994). Furthermore, the plasma wave
can lead to locally enhanced diffraction and focusing,
which distorts the pulse profile and reduces the plasma
wave phase velocity (Leemans et al., 1996).

G. Photon acceleration

In addition to accelerating electrons, a plasma wave
can be used to upshift the frequency of a properly phased,
low intensity, short laser pulse, as shown schematically in
Fig. 4 (often referred to as photon acceleration) (Esarey
et al., 1990; Wilks et al., 1989). Consider a plasma
wave with an electron density perturbation of the form
δn = −δn0 sin kpζ, where ζ = z− ct, and a low intensity,
“witness” laser pulse centered about ζ = 0 with a pulse
length L ≪ λp. The local density at the front of the
pulse, n(ζ = L/2), will be less than that at the back of
the pulse, n(ζ = −L/2). Since the local phase velocity
of the laser pulse is given by βp = vp/c ≃ 1 +ω2

p(ζ)/2ω2,

where ω2
p(ζ) ∝ n(ζ), the phase velocity at the pulse

front is less than that at the back of the pulse, i.e.,
vp(L/2) < vp(−L/2). Hence, the phase peaks at the
back move faster than those at the front and the pulse
wavelength decreases (the pulse frequency increases). For
small shifts, the laser wavelength will evolve according
to λ ≃ λ0 + z∆βp, where ∆βp = λ0dβp/dζ < 0 is
the difference in phase velocity between adjacent phase
peaks, z is the propagation distance, and λ0 = 2πc/ω0

is the initial laser wavelength. Hence, the frequency
shift is given by ω/ω0 ≃ 1 − zdβp/dζ, where dβp/dζ ≃
(ω2

p/2ω
2
0)d(δn/n0)/dζ. A more detailed calculation indi-

cates that the frequency will be upshifted according to
(Esarey et al., 1990)

ω

ω0
≃
(

1 +
ω2

p

ω2
0

δn0

n0
kpz cos kpζ

)1/2

, (28)

where nonlinear effects and phase slippage between the
laser pulse and plasma wave (i.e., dephasing) have been
neglected.

Typically, the plasma wave induced frequency shifts
are small. For example, consider a laser with λ = 1 µm
and r0 = 30 µm, propagating in a plasma of density
n0 = 1018 cm−3 (λp = 30 µm). After propagating one
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Rayleigh length z = ZR, ω/ω0 ≃ 1 + δn0/3n0. Small
frequency shifts, however, can be detected and this pro-
cess can be useful for diagnosing the wakefield (Marquès
et al., 1996; Siders et al., 1996). Large frequency shifts re-
quire long propagation distances and large plasma wave
amplitudes. For example, after one electron dephasing
length Ld = λpω

2/ω2
p, ω/ω0 = (1 + 2πδn0/n0)

1/2.

III. LASER-PLASMA ACCELERATORS

A. Laser wakefield accelerator

In the laser wakefield accelerator (LWFA) (Gorbunov
and Kirsanov, 1987; Sprangle et al., 1988; Tajima and
Dawson, 1979), a single, short (<∼ 1 ps), high intensity
(>∼ 1017 W/cm2) laser pulse drives a plasma wave. The
wakefield is driven most efficiently when the laser pulse
length is approximately the plasma period L ∼ λp. The
LWFA was first proposed by Tajima and Dawson (1979).
Prior to 1985, the technology for generating ultra-intense,
picosecond laser pulses did not exist and only the PBWA
concept, described in Sec. III.B, appeared feasible (the
PBWA concept relied on long pulses of modest inten-
sity). The LWFA was later re-invented independently by
Gorbunov and Kirsanov (1987) and by Sprangle et al.

(1988). This roughly coincides to the time when CPA
was applied to compact solid-state lasers and a table-top,
terawatt laser system was first demonstrated by Mourou
and co-workers (Maine et al., 1988). The nonlinear the-
ory of the LWFA in 1D was developed by Bulanov et al.

(1989), Sprangle et al. (1990a,b), and Berezhiani and Mu-
rusidze (1990). The nonlinear theory of the LWFA in 2D,
including the self-consistent evolution of the laser pulse,
was analyzed by Esarey et al. (1993a); Sprangle et al.

(1992).
As an intense laser pulse propagates through an

underdense plasma, (λ/λp)
2 ≪ 1, the ponderomotive

force associated with the laser pulse envelope, Fp ∼ ∇a2,
expels electrons from the region of the laser pulse. If the
length scale Lz of the axial gradient in the pulse profile is
approximately equal to the plasma wavelength, Lz ∼ λp,
the ponderomotive force excites large amplitude plasma
waves (wakefields) with phase velocities approximately
equal to the laser pulse group velocity [see Fig. 1(a)]. For
a typical axially symmetric laser pulse (e.g., a Gaussian
profile), the wakefield amplitude will be maximum when
L ≃ λp/2, where L = cτL is laser pulse length. The
precise value of L which maximizes the wake amplitude
will depend on the shape of the axial pulse profile.
Following are some examples.

Linear regime, sine pulse. Consider a LWFA driven by
a circularly polarized laser pulse with a normalized in-
tensity a2 = a2

0 exp(−2r2/r2s) sin2(πζ/L) for 0 < ζ < L,
where ζ = z − ct and a2

0 ≪ 1. Solutions to Eq. (11) indi-
cate that the wakefield amplitude is maximum for pulse
lengths L ≃ λp. Behind the pulse, ζ < 0, the axial elec-

tric field and density perturbation of the wake are given
by (Esarey et al., 1989)

Ez

E0
=
π

4
a2
0 exp

(

−2r2

r2s

)

cos kpζ, (29)

δn

n0
=
π

4
a2
0

[

1 +
8

k2
pr

2
s

(

1 − 2r2

r2s

)]

exp

(

−2r2

r2s

)

sin kpζ,

(30)
for L = λp. For linear polarization, averaging over the
fast oscillation yields Eqs. (29) and (30) with a2

0 replaced
with a2

0/2. Notice that a tightly focused laser pulse with
k2

pr
2
s/8 < 1 will result in a larger density perturbation

δn/n0 on-axis, whereas the axial electric field Ez on-axis
is unchanged in comparison to the 1D values.

Linear regime, Gaussian pulse. For a circularly polar-
ized, Gaussian pulse profile, a2 = a2

0 exp(−ζ2/L2), the
wakefield amplitude behind the pulse (ζ2 ≫ L2) is given
by (Gorbunov and Kirsanov, 1987)

Emax/E0 = (
√
πa2

0/2)kpL exp(−k2
pL

2/4), (31)

assuming a2
0 ≪ 1. Equation (31) explicitly shows

the dependence of the wake amplitude on the pulse
length L. In particular, the wake amplitude achieves
a maximum value of Emax/E0 = a2

0(π/2e)
1/2 ≃ 0.76a2

0

when L = λp/π
√

2.

Nonlinear regime, square pulse. Consider a circularly
polarized laser pulse with a square axial profile in the
1D limit r20 ≫ λ2

p. The wakefield amplitude is maximum
when L ≃ λNp/2, where λNp is the nonlinear plasma
wavelength Eq. (19), and is given by (Berezhiani and
Murusidze, 1990; Bulanov et al., 1989; Sprangle et al.,
1990a,b)

Emax/E0 = a2
0(1 + a2

0)
−1/2, (32)

where a2
0 = 3.6 × 10−19λ2(µm)I0(W/cm

2
) (for lin-

ear polarization, replace a2
0 with a2

0/2). Notice that
Emax ∝ λ−1

p ∼ L−1. Hence, the wakefield amplitude can
be increased by operating at high densities and shorter
pulse lengths. At high densities, however, the laser pulse
group velocity is reduced and electron dephasing can
limit the energy gain, as discussed in Sects. II.E and
III.G.

Nonlinear regime, sine pulse. As an example of nonlinear
plasma wave behavior, Eq. (16) has been solved numer-
ically (Sprangle et al., 1990a,b) for a linearly polarized
laser of the form a2 = a2

0 sin2(πζ/L) cos2(kζ) for −L <
ζ < 0 (and zero otherwise), with L = λp and λ = 1 µm.
The ambient plasma density is n0 = 1.2 × 1016 cm−3,
which yields L = λp = 300 µm (τL = L/c = 1 ps). A
mildly relativistic case a0 = 0.5 (I0 = 3.5×1017 W/cm2)
is shown in Fig. 5(a), and a highly relativistic case a0 = 2
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(I0 = 5.6 × 1018 W/cm2) is shown in Fig. 5(b). Fig-
ure 5 shows the density variation δn/n0 = n/n0 − 1
and the axial electric field Ez , with Emax ≃ 1 GV/m
in Fig. 5(a) and Emax ≃ 10 GV/m in Fig. 5(b). Note
that the rapid oscillations in the plasma density at one-
half the laser wavelength are due to a fast component
of the ponderomotive force at twice the laser frequency,
i.e., a2 ∼ 1 + cos(2kζ). The nonlinear effects of wave
steepening and period lengthening are clearly evident in
Fig. 5(b).

Because the plasma wave is driven by a single laser
pulse with L ≃ λp, the wakefield amplitude is relatively
insensitive to uncertainties in the pulse duration and the
plasma uniformity. This is shown in Fig. 8, where the
peak wakefield amplitude Emax is shown as a function
of the pulse length L, at a fixed density and intensity.
The parameters are identical to the sine profile laser
pulse examples shown in Figs. 5(a) and 5(b) (i.e., for
a0 = 0.5 and a0 = 2), only now the pulse length L is
varied. Plotted in Fig. 8 is the wakefield amplitude nor-
malized to EN = E0(a

2
0/2)(1 + a2

0/2)−1/2, which is the
maximum wakefield amplitude for a square pulse profile.
Notice that the electric field amplitude is maximum
for L ≃ 0.75 λp and is fairly insensitive to changes in
the pulse length. The curve for the a0 = 2 case is also
broader because of an increase in the nonlinear plasma
wavelength.

The optimal pulse length conditions for the square,
sine, and Gaussian pulse profiles discussed above may be
summarized as follows. For the square pulse, the wake-
field is maximum Emax = a2

0E0 when LFWHM = 0.5 λp

(kpLRMS = 0.91). For the sine pulse, the wakefield is
maximum Emax = 0.82 a2

0E0 when LFWHM = 0.5 λp

(kpLRMS = 1.1). For the Gaussian pulse, the wakefield
is maximum Emax = 0.76 a2

0E0 when LFWHM = 0.37 λp

(kpLRMS = 1). Here the pulse length is expressed in
terms of the full-width-half-maximum (FWHM) length
LFWHM and the root-mean-square (RMS) length LRMS of
the pulse intensity profile. These results assume a2

0 ≪ 1
and circular polarization (Leemans et al., 1996).

Furthermore, since the laser pulse in the LWFA is of
short duration, L ≃ λp, various instabilities which can be
detrimental to the propagation of long pulses can be re-
duced. Schemes that use long laser pulses, L≫ λp, such
as the PBWA and the self-modulated LWFA, are subject
to various instabilities, some of which are discussed in
Sec. VI.

Perhaps the first experimental evidence for plasma
wave generation by the LWFA mechanism was obtained
by Hamster et al. (1993). In these experiments, the emis-
sion of terahertz radiation at the plasma frequency was
observed when the plasma was driven by a laser pulse
of length L ≃ λp. Specifically, ωp/2π = 4.6 THz radi-
ation was observed for a 0.1 ps laser pulse propagating
in a plasma of density 2 × 1017 cm−3. This radiation is
emitted presumably by the 2D electron plasma currents
of the laser-induced wakefield. Direct measurement of

plasma wave generated in the LWFA has been reported
by researchers at Ecole Polytechnique (Marquès et al.,
1996) and at the University of Texas at Austin (Siders
et al., 1996) by using probe pulses and optical interferom-
etry techniques. In the Ecole Polytechnique experiments
(Marquès et al., 1996), a 120 fs duration, 800 nm wave-
length laser pulse with a maximum energy of 40 mJ was
focused to a maximum intensity of 3 × 1017 W/cm2 in a
plasma of density 1017 cm−3. A pair of probe pulses, sep-
arated from each other by 1.5 λp, were used to map out
the wakefield by adjusting the delay between the pump
and probe pulses. A plasma wave with a perturbed den-
sity of 30% to 100% was measured over several plasma
periods behind the probe pulse. At the University of
Texas (Siders et al., 1996), three probe pulses were used
to measure the density perturbation at a fixed delay be-
hind the pump pulse. By varying the ambient plasma
density, the plasma wave amplitude was observed to vary
in good agreement with theory. Kotaki et al. (2002) mea-
sured laser wakefield excitation with field amplitude of
20 GeV/m using a a time-resolved frequency domain in-
terferometer.

Dewa et al. (1998) have reported on the observation
of electron acceleration in LFWA experiments, although
with some controversy (Bernard et al., 1999), with en-
ergies of 100 MeV (17 MeV injected from a linac) with
a 2 TW laser system. Amiranoff et al. (1998) have ob-
served LWFA accelerated electrons with an energy gain of
1.6 MeV (3 MeV injected) using a 3.5 TW laser system.
The peak longitudinal electric field was estimated to be
1.5 GV/m. Kitagawa et al. (2004) observed electron ac-
celeration using a 1 µm, ∼ 0.5 ps duration laser exciting
a plasma wave in a glass capillary with plasma density
(plasma electrons created via ablation) of 1016 cm−3.

B. Plasma beat wave accelerator

In the plasma beat wave accelerator (PBWA) (Clayton
et al., 1993; Everett et al., 1994; Joshi et al., 1984; Kita-
gawa et al., 1992; Rosenbluth and Liu, 1972; Tajima and
Dawson, 1979), two long pulse laser beams of frequen-
cies ω1 and ω2 are used to resonantly excite a plasma
wave. This is done by appropriately adjusting the laser
frequencies and plasma density to satisfy the resonance
condition ∆ω ≡ ω1 − ω2 ≃ ωp. When this is satisfied,
large amplitude plasma waves can be generated. The
PBWA was first proposed by Tajima and Dawson (1979)
as an alternative to the laser wakefield accelerator, since
compact, ultrashort pulse, ultrahigh power laser technol-
ogy (Mourou and Umstadter, 1992; Perry and Mourou,
1994) was not available in 1979. The PBWA was sub-
sequently analyzed by various researchers (Esarey et al.,
1988; Gibbon and Bell, 1988; Horton and Tajima, 1986;
Joshi et al., 1984; McKinstrie and Forslund, 1987; Mori
et al., 1988; Tang et al., 1985). (Resonant excitation of
a plasma wave using two laser beams had been previ-
ously analyzed by Rosenbluth and Liu (1972) for plasma
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heating applications.) To overcome the problem of de-
phasing between the accelerated electrons and the plasma
wave, Katsouleas and Dawson (1983) proposed the use of
a transverse magnetic field. Tang et al. (1985) described
how the plasma wave amplitude could be increased by
operating at an optimal frequency mismatch ∆ωopt, such
that ω1−ω2 = ωp +∆ωopt. Since this early work, various
aspects of the PBWA have been analyzed and simulated,
such as the self-focusing of the laser beams by relativis-
tic, plasma wave, and cascading effects (Esarey and Ting,
1990; Esarey et al., 1988; Gibbon and Bell, 1988; Mori
et al., 1988).

Consider two lasers beams with combined normal-
ized vector potentials given by a = a1 cos(k1z − ω1t) +
a2 cos(k2z − ω2t), where k1,2 are the laser wavenumbers.
The ponderomotive force ∇a2/2 will have a resonant beat
term (a2)res = a1a2 cos(∆kz−∆ωt), where ∆k ≡ k1−k2.
In the linear regime, plasma wave generation is described
by (∂2/∂t2 + ω2

p)φ = ω2
p(a2/2)res, and the ponderomo-

tive beat term can resonantly drive a plasma wave when
∆ω ≃ ωp. When the resonance condition is exactly satis-
fied, ∆ω = ωp, secular growth of the plasma wave results,
φ = −φs sin(∆kz − ∆ωt), where φs = a1a2kp|ζ|/4 and
|ζ| = |z − ct| is the distance behind the front of the laser
beams. Hence, the amplitude of the plasma wave within
the laser pulse is (Rosenbluth and Liu, 1972)

Emax/E0 = a1a2kp|ζ|/4. (33)

Furthermore, notice that the phase velocity of the
plasma, vp = ∆ω/∆k, is given by vp/c ≃ 1−ω2

p/(2ω1ω2)

in the limit ω2
p/ω

2
1 ∼ ω2

p/ω
2
2 ≪ 1, i.e., the phase velocity

of the plasma wave is approximately equal to the group
velocity of the driving lasers.

In effect, the laser beat wave acts as a series of laser
pulses, each of amplitude a1a2 and of duration ∆τ =
2π/∆ω. Each of these pulses generates a wake of ampli-
tude Emax/E0 = πa1a2/2. The total plasma wave ampli-
tude generated by a laser beat wave of length L = Nλp

is Emax/E0 = Nπa1a2/2, where N is the number of laser
beat periods within the pulse.

The result given by Eq. (33) was based on linear plasma
theory, |φ| ≪ 1. Various nonlinear effects were ne-
glected. In particular, as discussed in Sec. II.C, as the
plasma wave amplitude increases the plasma wave pe-
riod increases. Since the period of the beat wave is fixed,
whereas the period of the plasma wave is increasing, the
plasma wave will eventually become out of phase with the
laser beat wave. This resonant detuning of the plasma
wave from the beat wave will limit the amplitude of the
plasma wave (Rosenbluth and Liu, 1972).

The nonlinear dynamics of the beat wave generation in
1D with ω2

p/ω
2 ≪ 1 can be examined using the nonlinear

Poisson equation Eq. (17). Analysis of Eq. (17) indi-
cates that the nonlinear plasma wavelength is given by
λNp = (4/kp)(1+φs)

1/2E2(̺), where φs is the maximum
amplitude of the plasma wave, ̺ = 1−(1+φs)

−2, and E2

is the complete elliptic integral of the second kind. In the
limit φ2

s ≪ 1, λNp ≃ λp(1+3φ2
s/16), which indicates that

the nonlinear plasma wavelength increases as the plasma
wave amplitude increases. Hence, in the limit φ2

s ≪ 1,
the nonlinear plasma wave number is given by

kNp ≃ kp(1 − 3φ2
s/16). (34)

The detuning and saturation of the plasma wave can
be estimated as follows. The growth of the plasma wave
will stop when the phase difference between the laser beat
wave and the plasma wave is π/2, i.e.,

∫

dζ(kp − kNp) ≃
π/2. Using the linear result for the plasma wave am-
plitude, φs = a1a2kp|ζ|/4, yields a detuning distance

Lt = (2π/a2
1a

2
2)

1/34/kp. Hence, the plasma wave ampli-
tude will saturate after a distance Lt behind the front of
the laser beam, which gives a plasma wave amplitude of
φsat = (2πa1a2)

1/3 = Emax/E0. A more careful deriva-
tion (Rosenbluth and Liu, 1972) of resonant detuning
yields a maximum value of the electric field at saturation
of

Emax/E0 = (16a1a2/3)1/3, (35)

which assumes that the laser beat frequency is exactly
equal to the ambient plasma frequency ∆ω = ωp. Satu-
ration occurs because the plasma wave period increases
as the wave grows. Hence, to partly compensate for the
increasing nonlinear plasma period, the plasma wave can
be driven to higher amplitudes by using a laser beat pe-
riod which is slightly longer (Tang et al., 1985). In other
words, the beat frequency is slightly detuned such that
∆ω < ωp. Tang et al. (1985) showed that the optimum
detuning, which maximizes the plasma wave amplitude
at saturation, is given by

∆ωopt/ωp = 1 − (9a1a2)
2/3/8. (36)

This gives a maximum saturation amplitude of

Emax/E0 = 4(a1a2/3)1/3. (37)

The above results are valid in the limit of weak pump
amplitudes a1a2 ≪ 1 for which the plasma wave is driven
to saturation over a large number of beat periods. In the
highly nonlinear regime, a1a2

>∼ 1, however, the same
general concepts apply to beat wave generation, i.e., the
beat wave amplitude is limited by the increasing nonlin-
ear plasma wavelength and the beat wave amplitude can
be optimized by increasing the beat wave period such
that ∆ω < ωp. To illustrate this, Eq. (17) is solved
numerically (Umstadter et al., 1995) for a laser beat
wave consisting of four beat periods, as shown in Fig. 9.
The amplitudes of the lasers are a1 = a2 = a0, with
a0 = 1.2, and linear polarization is assumed, such that
(a1a1)s = a2

0/2, where the subscript s refers to an av-
eraging over the fast laser period. The ambient plasma
density is n0 = 1016 cm−3 (λp = 330 µm). The case
∆ω = ωp is shown in Fig. 9(a), and it is clear that the
plasma wave amplitude saturates (reaches maximum am-
plitude) after just the second beat pulse. The effect of
the third and fourth beat pulses is to drive the plasma
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wave down to a low amplitude. In Fig. 9(b) the beat pe-
riod has been optimized numerically such that the plasma
wave amplitude after the fourth beat pulse is maximized,
i.e., the beat period is increased ∆ω < ωp such that the
length of the beat pulse is closer to the final nonlinear
plasma wavelength λNp. This results in a dramatic in-
crease in the final amplitude of the plasma wave electric
field, Emax ≃ 1.4 E0 = 13 GV/m, in comparison to the
∆ω = ωp case.

The resonant detuning can be overcome by chirping the
lasers to compensate for the change in nonlinear plasma
wavelength (Deutsch et al., 1991), resulting in a signif-
icant increase in the plasma wave amplitude. A modi-
fied version of the PBWA based on autoresonant phase
locking of the plasma wave to the slowly chirped beat
frequency of the driving lasers has also been proposed
(Lindberg et al., 2004, 2006). This autoresonant method
allows plasma wave amplitudes beyond the detuning limit
and is relatively insensitive to variations in plasma and
laser parameters.

In addition to resonant detuning, the plasma wave am-
plitude in the PBWA can be limited by laser-plasma in-
stabilities. Experiments at Ecole Polytechnique observed
saturation of the beat-generated plasma wave by a para-
metric coupling to ion waves (Amiranoff et al., 1992). In
general, since the laser pulse lengths in the PBWA are
long, L > λp, the beams are subject to various laser-
plasma instabilities, which are discussed in Sec. VI.

The observation of plasma wave generation in the
PBWA via Thomson scattering was first demonstrated by
Clayton et al. (1985) and later observed by several groups
(Amiranoff et al., 1992; Clayton et al., 1993; Kitagawa
et al., 1992). Acceleration of background plasma elec-
trons in the PBWA was first observed by Kitagawa et al.

(1992) using two lines of a CO2 laser in a plasma of den-
sity 1017 cm−3. Plasma electrons were trapped and accel-
erated to an energy in excess of 10 MeV. A plasma wave
amplitude of δn/n0 = 0.05 was observed and an accelera-
tion gradient of 1.5 GV/m was estimated. Clayton et al.

(1993) observed electron acceleration in a series of PBWA
experiments preformed at the University of California at
Los Angeles (UCLA) using two lines of a CO2 laser in a
plasma of density 9× 1015 cm−3. A 28 MeV energy gain
was observed using a 2 MeV injected electron beam, cor-
responding to a gradient of 2.8 GV/m and a plasma wave
amplitude of δn/n0 = 0.28. The UCLA experiments were
particularly well diagnosed and various laser-plasma in-
teraction phenomena and instabilities have been observed
(Everett et al., 1995a; Leemans et al., 1991, 1992). In ex-
periments at Ecole Polytechnique, Amiranoff et al. (1995)
observed acceleration in a PBWA experiment using two
Nd laser lines in a plasma of density 1017 cm−3. The
energy of a 3.4 MeV injected electron beam was ob-
served to increase by 1.4 MeV. A plasma wave ampli-
tude of 2% and a gradient of 0.6 GV/m were observed.
Plasma wave saturation and parametric coupling to ion
waves were also observed in these experiments (Amira-
noff et al., 1995). Nonresonant beat wave excitation has

also been explored as a method for operating at higher
plasma densities (Filip et al., 2004). Extended laser-
plasma interaction lengths have been achieved in PBWA
experiments through plasma-channel generation (Tochit-
sky et al., 2005), resulting in enhanced energy gain of
injected electrons.

Parametric excitation of plasma waves by counter-
propagating lasers has also been explored (Shvets et al.,
2002). For example, plasma wave generation via four-
wave mixing is possible: two co-propagating laser pulses
detuned by ωp interact with a counter-propagating laser,
driving two slow phase velocity waves, and the beating of
these slow waves (a super-beat wave) drives a fast plasma
wave for acceleration. A variation of scheme is to re-
place the two detuned co-propagating lasers with a single
frequency ultra-short resonant laser pulse (Shvets et al.,
1999). The laser intensities required for a given acceler-
ating gradient can be smaller for the counter-propagating
geometry compared to the PBWA.

C. Multiple laser pulses

In the previous section discussing the PBWA, it was
pointed out that (i) the laser beat wave acted in effect
as a series of short laser pulses, (ii) as the plasma wave
grew the plasma period increased which led to a loss of
resonance with respect to the laser beat pulses, and (iii)
the beat period, i.e., the width of the beat pulses, could
be adjusted and optimized to maximize the plasma wave
amplitude. These general principles can be extended to
describe plasma wave generation by a series of short laser
pulses (Berezhiani and Murusidze, 1992; Bonnaud et al.,
1994; Dalla and Lontano, 1994; Nakajima, 1992; Um-
stadter et al., 1994). For example, the resonant laser-
plasma accelerator (Umstadter et al., 1994) uses an opti-
mized train of short laser pulses to drive a plasma wave,
in which the width of each pulse and the spacing be-
tween pulses is independently controlled. By optimizing
the pulse widths and interpulse spacings, resonance with
the plasma wave can be maintained and saturation of the
plasma wave by resonant detuning can be eliminated. A
sequence of m pulses is optimized when the pulse widths
and spacings are chosen to maximize the plasma wave
amplitude.

For square pulses in the linear regime (a2 ≪ 1 and
Emax/E0 ≪ 1), the optimum pulse train consists of m
identical pulses, each of width L = λp/2 and separated
by a distance (2ℓ + 1)λp/2, where ℓ is an integer. The
plasma wave amplitude will be m times the single pulse
value, Emax/E0 = ma2

0. This result neglects nonlinear
effects. In particular, as the nonlinear plasma wavelength
increases, resonant detuning will eventually saturate the
plasma wave amplitude.

In the nonlinear regime, however, resonance can only
be maintained by optimizing both the pulse widths and
spacings of each individual pulse. In the 1D limit with
ω2

p/ω
2 ≪ 1, this can be examined by solving Eq. (17).
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For square pulse profiles, analytic solutions can be ob-
tained. It can be shown (Bonnaud et al., 1994; Dalla
and Lontano, 1994) that the optimal width of the mth
pulse Lm, the nonlinear wavelength λNm of the wake be-
hind the mth pulse, and the electric field amplitude Ezm

of the wake behind the mth pulse are given by

Lm = (2/kp)x
1/2
m E2(ym), (38)

λNm = (4/kp)x
1/2
m E2(ŷm), (39)

Ezm/E0 = x1/2
m − x−1/2

m , (40)

where xm = γ2
⊥1γ

2
⊥2 · · · γ2

⊥m, γ2
⊥m = 1 + a2

m, am is the
amplitude of the mth pulse, E2 is the complete ellip-

tic integral of the second kind, y2
m = 1 − γ2

⊥mx
−1/2
m

and ŷ2
m = 1 − x

−1/2
m . The optimal spacing between the

end of the mth pulse and the beginning of the mth+1
pulse is given by (2ℓ+ 1)λNm/2 (ℓ =integer). The max-
imum normalized electric field of the wake Emax/E0, for
an optimized train of m square pulses of equal ampli-
tudes am = a0, is plotted in Fig. 10 versus the quantity
a2

T = ma2
0 (Bonnaud et al., 1994; Dalla and Lontano,

1994). The curves show the results for 1, 3, 4, 10, and
100 pulses. In the linear regime, Ezm = mEz1 = ma2

0E0,
i.e., these curves are just straight lines. Figure 10, how-
ever, shows that in the nonlinear regime, m pulses are
more efficient than the linear result, i.e., Ezm > mEz1.
In the highly nonlinear regime, this enhancement can be
quite dramatic. Furthermore, Fig. 10 indicates that just
a few optimized square pulses are far more efficient than
a single pulse.

For square pulse profiles, both the width of the pulse
and the spacing between pulses increases for subsequent
pulses in the train, since the nonlinear wavelength of the
plasma wave is increasing. For more realistic pulse pro-
files, this is not necessarily the case. Consider the electric
field envelope of each pulse modeled by a half period of a
sine function, e.g., a = a1 sin(πζ/L1), with 0 < ζ < L1,
for the first pulse. The result from a numerical optimiza-
tion (Bonnaud et al., 1994; Dalla and Lontano, 1994)
of Eq. (17) for a train of four sine pulses is shown in
Fig. 11. Here, the plasma density is n0 = 1016 cm−3 and
the pulses are linearly polarized with equal amplitudes
am = a0 = 1.2. Notice that the pulse width is decreas-
ing, i.e., the width of the first pulse is 940 fs, whereas the
width of the fourth laser pulse is 200 fs. From Fig. 11,
it can be seen that the pulses are optimized when they
reside in the region of the plasma wave for which φ < 0
and dφ/dζ < 0, where ζ = z−ct. This is the phase region
of the plasma wave for which the laser pulse drives the
plasma wave most efficiently. As in the square wave case,
λNm, and thus the spacing between pulses, increases with
each succeeding pulse. For this example, the total laser
fluence for the pulse train is Iτtot = 2.2 MJ/cm2 and the
final accelerating field is Emax ≃ 1.9 E0 = 18 GV/m.

Several techniques may generate a train of short, in-
tense pulses using CPA laser systems (Bonnaud et al.,

1994; Dalla and Lontano, 1994). One possible method is
to divide the amplified stretched pulse by use of beam
splitters, then send the separate pulses to separate com-
pressors with adjustable lengths and delays. Alterna-
tively, Fourier filtering can by used by placing a mask
in the pulse stretcher to modify the phase and/or ampli-
tude of the frequency components of the pulse in such a
way that, when it is recompressed, a series of pulses with
arbitrary spacings and widths will be produced. Prelimi-
nary experiments on similar methods have been reported
(Liu et al., 1995).

D. Self-modulated laser wakefield accelerator

In the previous section it was described how a train
of laser pulses can be used to generate a large amplitude
wakefield. Under appropriate conditions, however, it is
possible for a single, long laser pulse to break up into a
train of short pulses, each of these short pulses having a
width on the order of λp. Associated with the break up
of the long pulse and the formation of the pulse train is
a large amplitude plasma wave. This process is referred
to as self-modulation (Andreev et al., 1992; Antonsen,
Jr. and Mora, 1992; Chen et al., 2004; Coverdale et al.,
1995; Esarey et al., 1993a; Gordon et al., 1998; Joshi
et al., 1981; Leemans et al., 2002, 2001; Malka et al., 2001;
Modena et al., 1995; Moore et al., 1997; Nakajima et al.,
1995; Sprangle et al., 1992; Wagner et al., 1997) and was
first observed in fluid simulations (Andreev et al., 1992;
Antonsen, Jr. and Mora, 1992; Sprangle et al., 1992)
of relativistically guided laser pulses. Physically, self-
modulation occurs from the plasma wave producing peri-
odic regions of enhanced focusing and diffraction (Esarey
et al., 1994). The self-modulation instability resembles a
highly 2D version of a forward Raman instability. For-
ward Raman scattering occurs simultaneously, adding
to the modulation, and in the 1D limit, pulse modula-
tion can occur via forward Raman scattering alone (Mori
et al., 1994).

The process by which a plasma wave can modulate a
laser pulse by producing periodic regions of enhanced fo-
cusing and diffraction was first described and analyzed
by Esarey and Ting (1990). The self-modulation of
relativistically-guided laser pulses was observed in the
simulations of Andreev et al. (1992), Sprangle et al.

(1992), and Antonsen, Jr. and Mora (1992, 1993). Krall
et al. (1993) simulated a self-modulated LWFA, including
the acceleration of an injected electron beam, and showed
that this configuration can have certain advantages over
the standard LWFA. The self-modulation instability was
subsequently analyzed by Esarey et al. (1994) and An-
dreev et al. (1994, 1995) and, in the 1D limit, RFS was
analyzed by Mori et al. (1994). Extensive particle-in-
cell simulations of short, intense pulses propagating in
the high density regime have been carried out by Decker
et al. (1994) and Bulanov et al. (1995).

To operate in the self-modulated regime (Andreev
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et al., 1994, 1995; Antonsen, Jr. and Mora, 1992, 1993;
Esarey et al., 1994, 1993a; Krall et al., 1993; Sprangle
et al., 1992), it is desirable that (i) the pulse length be
long compared to the plasma wavelength, L > λp, and
(ii) the pulse power to be larger than the power required
to guide a long laser beam, P > Pc(1 − ∆n/∆nc). Here,
Pc = 17(ω/ωp)

2 GW is the critical power required for rel-
ativistic optical guiding, ∆n is the depth of a preformed
parabolic density channel (if present), ∆nc = 1/πrer

2
0 is

the critical channel depth, and re is the classical electron
radius. The optical guiding of laser pulses by relativistic
effects and density channels will be discussed more com-
pletely in the Sec. V. In the remainder of this section,
it will be assumed that the laser pulse is propagating in

an initially uniform plasma (∆n = 0). Since λp ∝ n
−1/2
0

and Pc ∝ n−1
0 , for fixed laser parameters, the conditions

L > λp and P > Pc can usually be satisfied by operating
at a sufficiently high plasma density.

Consider the possibility of generating wakefields with
a 300 fs (L = 90 µm) laser pulse of wavelength λ =
1 µm and power P = 10 TW. To operate in the stan-
dard LWFA configuration, L ≃ λp implies a density of
n0 ≃ 1.4×1017 cm−3. At this density P ≪ Pc ≃ 140 TW
and the effects of relativistic guiding are unimportant. To
operate in the self-modulated regime, it is desirable that
L > λp and P > Pc. Choosing a plasma density such that
P = 1.5 Pc implies n0 ≃ 2.8×1018 cm−3 and L ≃ 4.5 λp.
Hence, for this laser pulse, the self-modulated regime can
be reached by increasing the plasma density by a fac-
tor of 20 compared to the standard LWFA configuration.
Furthermore, the corresponding energy gain can be en-
hanced by nearly a factor of 10 compared to the standard
LWFA configuration, as is indicated by simulations dis-
cussed below.

The advantages of the self-modulated LWFA over the
standard LWFA are simplicity and enhanced accelera-
tion. Simplicity in that a matching condition of L ≃ λp,
a preformed density channel, or special pulse tailoring are
not required. Enhanced acceleration is achieved for sev-
eral reasons: (i) The self-modulated LWFA operates at
higher density, hence a larger wakefield will be generated,
since Ez ∝ 1/

√
n0, as indicated by Eq. (11). (ii) Since

P > Pc, the laser pulse will tend to focus to a higher in-
tensity, thus increasing a0 and Ez . (iii) The wakefield is
resonantly excited, i.e., excited by a series of beamlets as
opposed to a single pulse as in the standard LWFA. (iv)
Relativistic optical guiding allows the modulated pulse
structure to propagate for several Rayleigh lengths, thus
extending the acceleration distance. The disadvantages
of the self-modulated LWFA are (i) at higher densities
the laser pulse group velocity (≃ the plasma wakefield
phase velocity) decreases and, hence, electron dephasing
from the plasma wakefield can limit the acceleration dis-
tance, and (ii) the modulated pulse structure eventually
diffracts.

The properties of the self-modulated LWFA are illus-
trated by the following simulations (Krall et al., 1993).
For fixed laser pulse parameters, two cases will be con-

sidered: (1) a standard LWFA in which L ≃ λp and
P < Pc and (2) a self-modulated LWFA, in which L > λp

and P > Pc. The laser parameters for both these
cases are identical: a Gaussian axial intensity profile
with a pulse length L = 90 µm (300 fs), λ = 1 µm,
a0 = 0.7, r0 = 31 µm (in vacuum, which corresponds to
ZR = 3 mm), P = 10 TW, and a pulse energy of 1.5 J.
The simulation begins at t = 0 as the laser pulse en-
ters the plasma, initially converging such that in vacuum
it would focus to a minimum spot size of r0 = 31 µm
at ct = 3ZR. The plasma density is initially increas-
ing, reaching full density at ct = 2ZR. The simulation
continues until ct = 10ZR = 3 cm. In both cases, the
acceleration and trapping of a continuous electron beam
with initial energy of 3 MeV and normalized emittance
εn = 130 mm-mrad is considered. The electron beam is
initially converging such that in vacuum it would focus
to a minimum RMS radius rb = 200 µm at ct = 3ZR.
With such a large initial emittance, only a small fraction
(∼ 1%) of the particles will be trapped and accelerated.

For the standard LWFA, Case (1), the requirement L =
λp = 90 µm implies a density of n0 = 1.4 × 1017 cm−3.
At this density, P ≪ Pc = 140 TW, such that relativis-
tic guiding effects are unimportant. The presence of the
plasma has little effect on the evolution of the laser pulse,
which reaches a peak intensity of |a|2 = 0.56 at ct = 3ZR.
The evolution of the spot size, Fig. 12, is very close to
vacuum diffraction. This is also evident in Fig. 13(a)
(dashed line), where the peak accelerating field, plotted
versus time, is symmetric about the focus, ct = 3ZR. Af-
ter ct = 10ZR = 3 cm, a small fraction (∼ 0.1%) of the
test electron beam particles have been trapped and accel-
erated. At ct = 2 cm, the peak particle energy is 48 MeV,
which implies an average acceleration of 2.4 GeV/m, as
shown in Fig. 13(b) (dashed line).

For the self-modulated LWFA, Case (2), the density is
increased such that P = 1.5Pc = 10 TW, which implies
n0 = 2.8 × 1018 cm−3, which is 20 times higher than in
Case (1). At this density L > λp = 20 µm, i.e., the
laser pulse now extends over ≃ 4.5 λp. Figure 14 shows
the laser intensity at (a) ct = 2ZR and (b) ct = 3.2ZR.
The axial electric field and the plasma density response
on-axis at ct = 3.2ZR are shown in Figs. 15(a) and
15(b), respectively. The laser pulse has become mod-
ulated (three peaks are observable, separated by λp) and
the plasma wave is highly nonlinear. In addition, rela-
tivistic optical guiding effects have focused the laser to
a much higher intensity than was observed in Case (1).
The evolution of the laser spot size is shown in Fig. 12
indicating that the pulse has focused to a smaller spot
size and remains guided over ≃ 5.5ZR. A plot of the
peak accelerating field versus time, Fig. 13(a) (solid line),
shows that the highly nonlinear fields persist as the laser
pulse is optically guided. A maximum accelerating field
of ≃ 130 GV/m was obtained. Because of the larger
fields, a greater fraction (2%) of the test electron beam
particles were trapped and accelerated. The peak parti-
cle energy of 430 MeV is observed at ct = 6ZR = 1.8 cm.
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At ct = 10ZR = 3 cm, however, the peak particle energy
has dropped to 290 MeV due to the reduced group veloc-
ity of the laser pulse, which causes the electrons to slip
out of phase with the wakefield and become decelerated.
Figure 13(b) (solid line) shows acceleration to 430 MeV
over 1.8 cm which gives an average gradient of 24 GeV/m.
This is an order of magnitude increase compared to the
standard LWFA of Case (1). In the above fluid simula-
tions, the excited plasma wave was below wavebreaking
E < EWB, and an externally injected electron beam was
used. However, in the experiments discussed below, it is
possible to drive the plasma wave in the self-modulated
regime to wavebreaking, resulting in copious amounts of
self-trapped electrons, albeit with large energy spread.

Evidence for plasma wave generation in the high-
density, self-modulated regime was first detected by
Coverdale et al. (1995). The presence of a plasma wave
leads to the generation of Stokes and anti-Stokes lines
in the frequency spectrum of the pump laser pulse. The
first two anti-Stokes lines were observed by Coverdale
et al. (1995), the appearance of which were correlated
with production of fast electrons, as discussed below.
Subsequently, multiple anti-Stokes lines in the forward
spectrum of the pump laser have been observed by sev-
eral other groups (Modena et al., 1995; Ting et al., 1996;
Wagner et al., 1997). The plasma wave generation in
the self-modulated regime has been measured via coher-
ent Thomson scattering with a frequency-doubled probe
pulse (Le Blanc et al., 1996; Ting et al., 1996). The evo-
lution of the plasma wave was observed by varying the
time delay between the pump and probe pulses. Evidence
for self-channeling and plasma waves excitation over the
length of the channel (4 mm, or ≈ 12ZR) has also been
measured via 90deg Thomson scattering (Clayton et al.,
1998).

Joshi et al. (1981) detected fast electrons in an early
experiment via forward Raman scattering. A single,
long (700 ps), CO2 laser pulse of modest intensity
(1015 W/cm2) interacting with a thin Carbon foil was
observed to produce 1.4 MeV electrons. Electron accel-
eration in the high-density, self-modulated regime has
been observed using ultrashort pulses (<∼ 1 ps). Naka-
jima et al. (1995) observed electron acceleration to ener-
gies ≥ 18 MeV using a 3 TW, 1 ps, 1017 W/cm2 laser
pulse in a plasma of density near 1019 cm−3. A laser-
solid interaction was used to produce a source of in-
jected electrons with energies near 1 MeV. Particle sim-
ulations in 1D suggested acceleration gradients on the
order of 30 GV/m. Coverdale et al. (1995) observed
2 MeV electrons, which were trapped and accelerated
from the background plasma, when a 600 fs, 5 TW,
8 × 1017 W/cm2 laser pulse propagated in a plasma of
density 2 × 1019 cm−3. The generation of electrons was
also correlated with the occurrence of anti-stoke lines
in the laser pulse spectrum, which indicates the pres-
ence of a plasma wave. Modena et al. (1995) demon-
strated the acceleration of self-trapped electrons to en-
ergies ≥ 44 MeV (limit of the detector) using a 1 ps,

20 TW, 5 × 1018 W/cm2 laser pulse in a plasma of den-
sity 1.5 × 1019 cm−3. A large flux of electrons was ob-
served (106 electrons/MeV at 44 MeV) and the electron
signal was correlated to the broadening of the 5 anti-
Stokes lines in the laser spectrum. Estimates based on
the electron dephasing length imply an acceleration gra-
dient > 100 GV/m. Acceleration of self-trapped elec-
trons has also been observed by Wagner et al. (1997).
The electrons were emitted in a well-collimated beam
in the forward direction (a divergence angle ≃ 8◦) and
the cross-section of the beam resembled the shape of the
cross-section of the laser at focus. By varying the laser
pulse energy, a threshold for electron acceleration was ob-
served near P ≃ Pc. Subsequently, other research groups
have measured energetic electron production in the self-
modulated regime (Gordon et al., 1998; Leemans et al.,
2001; Malka et al., 2001; Moore et al., 1997). The plasma
density dependence on the the electron spectra has been
studied, and it was confirmed that the maximum energy
increased with decreasing plasma density (Malka et al.,
2001), providing further evidence of electron acceleration
via plasma waves.

Experiments have shown the importance of pulse shape
on self-modulation and electron production (Leemans
et al., 2002). These experiments compared electron pro-
duction for laser pulses with slow and fast rise times. For
fast rise times the ponderomotive force is larger, resulting
in a larger initial plasma wave, which acts as the seed for
the self-modulation instability (Schroeder et al., 2003a).
Seeding of self-modulation by ionization-induced wake-
fields (Fisher and Tajima, 1996; Mori and Katsouleas,
1992) has been studied by Gordon et al. (2001), and con-
trolled seeding via ionization-induced wakefields has been
demonstrated experimentally (Chen et al., 2004). Exper-
iments and simulations by Malka et al. (2002) have dis-
cussed an intermediate regime between the standard and
self-modulated LWFA, in which the laser pulse is only
somewhat longer than the plasma wavelength. In this
regime, the pulse undergoes significant self-steepening,
resulting in enhanced plasma wave generation.

Another process that can contribute to acceleration
in the self-modulated regime (λp < L and P > Pc) is
direct laser acceleration (Pukhov et al., 1999). In this
mechanism, it is necessary that the accelerated electrons
undergo transverse betatron oscillations. When the beta-
tron frequency ωβ is near the laser frequency in the frame
of the accelerated electrons, ω ∼ 2ωβγ

2/γ2
⊥
, energy can

efficiently exchange between the electrons and the trans-
verse laser field. This is the inverse process of the electro-
magnetic instability responsible for the ion channel laser
(Whittum et al., 1990). The transverse betatron oscilla-
tions are produced by a transverse force that can result
from a variety of mechanisms, e.g., the radial structure
of the plasma wave (φ = φ0 exp(−2r2/r20) cos[kp(z − ct)]
for a Gaussian laser in the linear regime), forces resulting
from induced magnetic fields, or, in the blowout regime,
from the formation of an ion channel through the expul-
sion of background plasma electrons by the radial pon-
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deromotive force of the laser. In the blowout regime
(φ0 ∼ k2

pr
2
0/8), the electrons oscillate with the betatron

frequency ωβ ≃ ωp/(2γ)
1/2 (Esarey et al., 2002). Gahn

et al. (1999) have reported multi-MeV electrons accel-
erated by a 1.2 TW, 200 fs laser pulse channeling in a
high-density (1020 cm−3) plasma, and have attributed
the dominant acceleration process to direct laser acceler-
ation.

E. Blow-out regime

In the mildly relativistic wakefield regime (a2 ≪ 1),
the wakefield can be described analytically in 3D using
cold fluid theory, as is Sec. II.B, which is valid provided
that the perturbed fluid quantities remain small (e.g., the
perturbed density |δn| ≪ n0). In the high intensity limit
(a2 >∼ 1), the wakefield can be described analytically in
the 1D limit (broad pulse kpr0 ≫ 1), as in Sec. II.C.
However, for a radially bounded pulse in 3D (kpr0 <∼ 1)
in the high intensity limit, the wakefield must typically
be described numerically. For a bounded pulse in 3D,
as the intensity increases, the wakefield structure can de-
part significantly from the sinusoidal form described by
linear theory. In addition to wave steepening and pe-
riod lengthening, which occur in the 1D limit, the radial
structure of the wake can exhibit nonlinearities. One
such effect is that the wavefront of the plasma wave can
be curved, the curvature of which becomes more severe
the greater the distance behind the driver, as a result of
the nonlinear plasma wavelength being greater on axis
(were the wake amplitude is high) than off axis. Another
effect is that the laser intensity can be sufficiently high
so as to completely expel all of the plasma electrons from
the vicinity of the axis (Faure et al., 2004; Geddes et al.,
2004; Gordienko and Pukhov, 2005; Mangles et al., 2004;
Pukhov and Meyer-ter-Vehn, 2002). This high intensity,
3D regime has been referred to as the blow-out, bubble,
or cavitation regime.

This regime of complete expulsion of the plasma elec-
trons from some region about the axis has been studied
for both laser (Pukhov and Meyer-ter-Vehn, 2002) and
electron beam drivers [referred to as a plasma wakefield
accelerator (PWFA)] (Rosenzweig et al., 1991). For elec-
tron beam drivers, the blow-out regime was first studied
by Rosenzweig et al. (1991), and more recently, by the
PWFA collaboration using the 30 GeV electron beam at
the Stanford Linear Accelerator Center (SLAC) to drive
plasma waves (Hogan et al., 2000, 2005). In the blow-out
regime of the PWFA (nb/n0 > 1, kpσz < 1 and kpσr < 1,
where σz and σr are the axial and radial bunch lengths,
respectively), all the plasma electrons can be expel from
the vicinity of and immediately behind the driver. The
blow-out region of the wake is characterized by an accel-
erating field that is constant as a function of radius and
varies linearly as a function of distance behind the driver,
and a focusing field that is linear as a function of radius.
This regime can have beneficial accelerating properties,

e.g., because the focusing forces are linear, the emittance
of an accelerated electron bunch will be preserved. In
the experiments at SLAC, the blow-out wake has led to
an energy gain of more than 40 GeV for the electrons in
the tail of the drive bunch (Blumenfeld et al., 2007). The
majority of electrons in the body of the drive bunch lost
energy, which represents the energy needed to generate
the plasma wave.

The radial force on a highly relativistic accelerated
electron is primarily due to the space charge force of the
resulting ion channel. In the blow-out regime, the ra-
dial space charge electric field is Er = (mc2/e)k2

pr/2 =
(kpr/2)E0. At the edge of the of an electron bunch
with radius rb, this can be written in convenient units
as Er(MV/m) ≃ 9.06 × 10−15n(cm−3)rb(µm). For ex-
ample, this radial force will cause an accelerated electron
with γ ≫ 1 to perform betatron oscillations about the
axis with a betatron wavelength λβ = (2γ)1/2λp (Esarey
et al., 2002). Particle-in-cell simulations (Lu et al., 2005)
indicate that linear wake result for Ez is fairly accurate
in the blow-out region provided nb/n0 ≤ 10, assuming a

gaussian drive bunch with kpσz =
√

2 and kpσr < 0.3.
An example of an electron beam driven wake in the

blow-out regime is shown in Fig. 17 which shows the spa-
tial plasma density response to an electron beam with en-
ergy 0.5 GeV, density nb = 10n0, rms longitudinal beam
size k2

pσ
2
z = 2 (Gaussian longitudinal profile), and rms

transverse beam size k2
pσ

2
x = 2 (Gaussian transverse pro-

file), propagating in an initially uniform plasma of den-
sity n0 = 5 × 1017 cm−3. The electron beam is moving
toward the right with its center located at kpz = 454.
These electron beam parameters are similar to those
produced by laser wakefield accelerator experiments at
LBNL (Leemans et al., 2006). Figure 17 was obtained
using a modified version of the particle-in-cell code PSC
(Ruhl, 2000) in 2D using 25 particles per cell and a trans-
verse and longitudinal cell size of 0.33 micron (32 cells per
rms beam radius).

For laser drivers, plasma blow-out can occur in many
regimes, including the long pulse, self-modulated, and
standard LWFA regimes (Kurki-Suonio et al., 1989a;
Mora and Antonsen, Jr., 1996; Sprangle et al., 1992; Sun
et al., 1987). For example, for a long laser pulse (with
a slowly varying axial profile) in a plasma (Sun et al.,
1987), the plasma density profile is determined by balanc-
ing the radial ponderomotive force with the space charge
force. The plasma density in the long pulse, adiabatic
limit is then given by

n/n0 = 1 + k−2
p ∇2

⊥
(1 + a2)1/2, (41)

assuming circular polarization. For a Gaussian pulse pro-
file, a2 = a2

0 exp(−2r2/r20), the on-axis (r = 0) density is
n(0)/n0 = 1 − (4/k2

pr
2
0)a

2
0/(1 + a2

0)
1/2. This indicates

that complete blowout of the plasma electrons, n(0) ≤ 0,
occurs for a laser intensity satisfying a2

0/(1 + a2
0)

1/2 ≥
k2

pr
2
0/4. In the high intensity limit a2

0 ≫ 1, blow-

out requires a0 ≥ k2
pr

2
0/4 or, alternatively, a spot size
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r0 ≤ (2/kp)a
1/2
0 . To cavitate the electrons out to a larger

radius requires larger intensity. For example, a blow-out
region of r = r0/

√
2 requires a0 = 0.82k2

pr
2
0 , assuming

a2
0 ≫ 5.4.
For a short (L <∼ λp), intense (a2 >∼ 1) pulse, i.e.,

a standard LWFA in the highly nonlinear regime, the
generation of a large amplitude wake can occur simul-
taneously with plasma blow-out, in a manner analogous
to that of an electron beam driver in the PWFA. Laser
blow-out with moderately short pulses was studied by
Mora and Antonsen, Jr. (1996) for laser intensities in the
range a0 = 0.25− 3, spot sizes kpr0 = 4− 16, and pulses
lengths kpL ∼ 10 using a quasi-static, time-averaged par-
ticle code. Observed was self-steepening, pulse shorten-
ing (to kpL ∼ 2), self-focused propagation up to 30ZR

through an initially uniform plasma, and the complete
cavitation (blow-out) of the electrons from the region of
the laser pulse with the formation of a highly nonlinear
wake. Also observed was the self-trapping of relativistic
particles in the wake.

An example of a cavitated wake driven by a short
laser pulse in the mildly relativistic regime (a2

0 ≪ 1)
is shown in Fig. 17, which shows the spatial plasma
density response to a laser pulse with a0 = 0.35, rms
length 100 µm (half-sine longitudinal profile), spot size
r0 = 10 µm (Gaussian transverse profile), and wave-
length λ = 0.8 µm, propagating in an initially uniform
plasma of density n0 = 8 × 1015 cm−3 (plasma wave-
length λp = 300 µm). The laser is moving toward the
right (peak laser field located at kpz = 4.9). Figure 17
was obtained using a modified version of the particle-
particle-in-cell code PSC (Ruhl, 2000) in 2D using 4 par-
ticles per cell, 24 cells per laser wavelength longitudinally,
and 6 cells per laser wavelength transversely.

Laser blow-out with short (L < λp), ultra-intense
(a2 ≫ 1) pulses has been studied using particle-in-cell
simulations and theoretical modelling (Gordienko and
Pukhov, 2005; Lu et al., 2006; Pukhov and Meyer-ter-
Vehn, 2002; Tsung et al., 2004). For example, Gordi-
enko and Pukhov (2005) present a similarity theory in
which the blow-out wake is characterized by the sim-
ilarity parameter S = k2

p/a0k
2. They find that opti-

mal wake generation occurs for a laser spot radius of

kpr0 ≈ a
1/2
0 , a pulse length L = cτ ≤ r0, and a power

P > 30(τ [fs]/λ[µm])2 GW. Furthermore, they predict an
acceleration length Lacc ≈ 0.7(L/λ)ZR and the forma-
tion of a quasi-monoenergetic electron bunch with energy
Emono ≈ 0.65mc2(L/λ)(P [GW]/8.5)1/2. Simulation ex-
amples are given with a0 = 10 − 80. For the a0 = 80
case (1.5 kJ pulse energy), a quasi-monoenergetic elec-
tron peak was observed at 12 GeV after a propagation
length of 7200λ.

An analytic theory of wake generation in the blow-out
regime has also been carried out by Lu et al. (2006). In
the high intensity limit (a0 ≥ 4), they find that wake
generation is optimal when the laser spotsize satisfies

kpr0 ≃ 2a
1/2
0 . In this case, they predict that the di-

mensions of the blow-out region, or bubble, is roughly a

sphere with a radius rB ≃ (2/kp)a
1/2
0 , which is similar

to the above result obtained from balancing the radial
ponderomotive force with the space charge force. The
diameter of the bubble is approximately equal to the
nonlinear plasma wavelength λNp ≃ (2/π)(Em/E0)λp ≃
(2a

1/2
0 /π)λp, where Em is the maximum electric field am-

plitude of the wake. The axial electric field is of the form
Ez = (kpζ/2)E0 and is maximum when ζ = rB , i.e.,

Em = a
1/2
0 E0. The transverse wakefields are electromag-

netic with Er ≃ (kpr/4)E0 and Bθ ≃ −(kpr/4)E0, such
that the radial focusing force on a highly relativistic elec-
tron moving along the axis is Fr = Er−Bθ = (kpr/2)E0,
as noted above. To be in this regime requires a laser
power P ≃ 21.5(a0rB/λ)

2 GW, or P ≃ (a3
0/8)Pc with

a0
>∼ 4, where Pc is the critical power for relativistic self-

focusing. For laser powers in the range 15 <∼ P <∼ 100
TW, reaching the blow-out regime requires plasma densi-
ties in the range 2× 1019 >∼ n >∼ 2× 1018 cm−3. Particle-
in-cell simulations also indicate that electrons can be self-
trapped (Faure et al., 2004; Geddes et al., 2004, 2005b;
Malka et al., 2005; Mangles et al., 2004; Pukhov and
Meyer-ter-Vehn, 2002; Tsung et al., 2004) in the trail-
ing edge of the blow-out region and accelerated up to
relativistic energies.

An example of a blow-out wake driven by a short laser
pulse in the highly relativistic regime (a2

0 ≫ 1) is shown
in Figs. 18–20, which shows the spatial plasma density
response after propagating ωpt = 127 [Fig. 18(a)] and
ωpt = 633 [Fig. 18(b)], the spatial profiles of the longitu-
dinal [Fig. 19(a)] and transverse [Fig. 19(a)] electric fields
at ωpt = 127, and line-outs of the longitudinal electric
field on axis as a function z [Fig. 19(a)] and the transverse
electric field at kpz = 113 as a function of x [Fig. 19(a)]
at ωpt = 127. The initial laser pulse envelope is given by
a = a0 exp(−z2/L2) exp(−x2/r20) with a0 = 5, L = 6 µm,
r0 = 9 µm and λ = 0.8 µm. The laser enter the plasma of
density n0 = 7× 1018 cm−3 (λp = 12 µm) from the edge
of the simulation domain. These result were obtained us-
ing a modified version of the particle-in-cell code PSC in
2D with longitudinal cell size dz = λ0/50, transverse cell
size dx = λ0/3.2 = r0/36 = λp/50, and 9 particles per
cell. The simulation domain uses a moving window that
is 80 µm long and 100 µm wide. For these parameters,
kpr0 = 4.5 ≈ 2

√
a0.

According to the above discussed theories of the
blowout regime, the example presented in Figs. 18–20
should produce a spherical bubble with radius kprB ≃
2a

1/2
0 . For Fig. 18(a), at ωpt = 127 the peak laser field

is a0 = 6.3 (peak at kpz = 117). Hence, theory pre-
dicts a bubble diameter of 2kprB ≃ 10. From Fig. 18(a),
however, the bubble is of smaller dimensions and slightly
elliptical with a transverse diameter of 2kpXB ≃ 7 (at
the position kpz = 113) and a longitudinal diameter of
2kpZB ≃ 8. For Fig. 18(b), at ωpt = 633 the peak
laser field is similar, a0 = 6.2 (peak at kz = 622), but
now the bubble has expanded with transverse diameter
of 2kpXB ≃ 12 (a the position kpz = 618) and a longi-
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tudinal diameter of 2kpZB ≃ 14. One reason that the
bubble has expanded is that the laser pulse has steep-
ened and shortened, and even thought the peak laser
field is approximately the same in Figs. 19(a) and (b),
the ponderomotive force is large in Fig. 18(b) due to the
larger gradients in the intensity profile due to pulse steep-
ening. Clearly, since the ponderomotive force depends
on both the laser intensity amplitude and gradient scale
length, so should the properties of the blow-out wake,
and this behavior is not captured by the simple scaling

law kprB ≃ 2a
1/2
0 , which does not include the effect of

the laser intensity gradient scale length or the laser pulse
length.

The spatial profiles of the longitudinal and transverse
electric fields of the wake are shown in Figs. 19(a) and
(b), respectively, at ωpt = 127. Corresponding lineouts
of the longitudinal electric field along the axis as a func-
tion of kpz and the transverse electric field at kpz = 113
as a function of kpx are shown in Figs. 20(a) and (b),
respectively. As can be seen in Fig. 20, near the center
of the bubble, Ez is approximately a linear function of
z and Ex is approximately a linear function of x. Fur-
thermore, the amplitudes of Ez and Ex are comparable,
excluding the spike in Ez that occurs near the back of
the bubble.

Also evident in Fig. 18(b) is the appearance of a
trapped and accelerated electron bunch within the blow-
out region. These electrons are self-injected near the back
of the bubble. The bunch has a large energy spread with
a maximum electron energy of 145 MeV that occurs at
the position kpz = 610. The wakefield associated with
the trapped bunch can lead to beam loading, which can
distort and elongate the blow-out region.

F. Other laser wakefield acceleration regimes

Excitation of large wakefields by laser pulses can be
divided roughly in two categories. A “standard” regime
in which the laser intensity is sufficiently high (a0

>∼ 1)
and the laser pulse is sufficiently short (or the gradients
in the axial intensity profile sufficient short), L <∼ λp,
such that the initial laser pulse profile immediately drives
a large wake. In the standard regime, pulse evolution
is not required to excite a large wake. The other gen-
eral category is the “self-modulated” regime, typically
denoted from the standard regime by longer pulses of
lower intensities. In the self-modulated regime, the ini-
tial laser profile does not immediately drive a sufficiently
large wake. In this regime, evolution of the laser pulse is
necessary to excite a large wake. Pulse evolution is the
result of the initial, low amplitude wake acting back on
the laser pulse, such as in the case of the forward Raman
or self-modulation instabilities. Although, for some in-
tensity ranges, the standard and self-modulated regimes
may correspond to short and long pulse regimes, respec-
tively, there are many intermediate regimes in which self-
modulation of the laser pulse by the plasma wave is the

dominant mechanism, and some of these regimes have
been referred to as “pseudo-resonance” (Kimura et al.,
2005) or “forced” laser wakefield regimes (Malka et al.,
2002). The precise evolution of both the laser pulse
and the wake, however, depends on the precise laser and
plasma parameters. Pulse evolution, via the feedback of
the wake on the pulse, will eventually play a significant
role in the wake evolution in all regimes. Nonlinear ef-
fects such as pump depletion and pulse self-steepening
will always occur if the laser pulse is allowed to propa-
gate a sufficiently long distance, which effects both the
laser profile and the wake amplitude.

G. Acceleration limits and scaling laws

Several mechanisms can limit the energy gain in a laser
driven accelerator: laser diffraction, electron dephasing,
pump depletion, and laser-plasma instabilities. In vac-
uum a laser pulse undergoes Rayleigh diffraction, i.e., the
laser spot size evolves according to rs = r0(1+z2/Z2

R)1/2,
where r0 is the minimum spot size at the focal point z = 0
and ZR = kr20/2 is the Rayleigh length. Without some
form of optical guiding, the laser-plasma interaction dis-
tance will be limited to a few ZR. Various methods for
optical guiding, such as using a plasma density chan-
nel, are discussed in Sec. V. Electron dephasing, i.e., a
highly relativistic electron outrunning the plasma wave,
can limit the energy gain to a dephasing length Ld, as dis-
cussed in Sec. II.E. As the laser driver excites a plasma
wave, it loses energy, i.e., it pump depletes (Bulanov
et al., 1992; Horton and Tajima, 1986; Teychenné et al.,
1994a; Ting et al., 1990). The pump depletion length Lpd

can be estimated by equating the laser pulse energy to
the energy left behind in the wakefield, E2

zLpd ≃ E2
LL,

where EL is the laser field.
As an illustration, consider a standard LWFA driven

by a linearly polarized, square profile laser pulse with
L ≃ λNp/2 in the 1D limit. The dephasing and pump
depletion lengths are given by (Esarey et al., 2004)

Ld ≃
λ3

p

2λ2
×
{

1, for a2
0 ≪ 1,

(
√

2/π)a0/Np, for a2
0 ≫ 1,

(42)

Lpd ≃
λ3

p

2λ2
×
{

2/a2
0, for a2

0 ≪ 1,

(
√

2/π)a0, for a2
0 ≫ 1.

(43)

where Np is the number of plasma periods behind the
drive laser pulse. In Eq. (42), the factor of λ3

p/2λ
2 is

from requiring a highly relativistic electron (traveling at
c) to phase slip by λp/4 (since only 1/4 of a plasma wave
period is both accelerating and focusing). In the a2

0 ≫ 1
limit of Eq. (42), the factor 1/Np is from the plasma
wave period increasing as the laser pulse steepens, which
is the dominant effect in determining the plasma wave
phase velocity in the nonlinear limit. Furthermore, it can
be shown (Esarey et al., 2004) that, initially, the spatial
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rate at which the laser pulse energy changes scales as
−1/Lpd (pump depletion), the rate at which the mean
frequency changes scales as −1/Lpd (red shifts), and rate
at which the mean laser intensity changes scales as 1/Lpd

(pulse steepens).

As an example, consider the linear regime with the pa-
rameters a0 = 0.3, λ = 0.8 µm, and r0 = λp = 33 µm
(P = 3.3 TW and n0 = 1018 cm−3). The relevant prop-
agation lengths are ZR = 0.43 cm, Ld ≃ 2.8 cm, and
Lpd ≃ 62 cm, i.e., ZR ≪ Ld ≪ Lpd. Furthermore, since

Ld, Lpd ∝ n
−3/2
0 , the dephasing length and pump deple-

tion lengths can be increased by operating at lower densi-
ties. Since L ∼ λp in the standard LWFA, lower densities
correspond to longer laser pulse durations L ∝ 1/

√
n0.

In principle, a static magnetic field can be introduced to
reduce dephasing (Katsouleas and Dawson, 1983). Use
of an active medium has also been proposed as a method
to reduce pump depletion (Fisher et al., 1995).

In the linear regime (a2
0 ≪ 1), Ld ≪ Lpd and the

electron energy gain is limited by dephasing, not pump
depletion, assuming an axially uniform plasma. However,
by appropriately tapering the axial plasma density pro-
file, dephasing limitations can be overcome, resulting in
a larger single-stage energy gain (Sprangle et al., 2001).
By slowly increasing the plasma density as a function
of propagation distance, the phase velocity of the wake-
field can be increased, as is described in Sec. IV.D. In
principle, an axial density taper can be found for which
vp = c at some point behind the drive laser pulse. In this
case, acceleration would be limited by pump depletion,
Lpd ∼ (λ3

p/λ
2)a−2

0 .

In the nonlinear regime (a2
0
>∼ 1), Ld

>∼ Lpd and no den-
sity tapering is needed, since the electron energy gain is
limited by pump depletion, not dephasing. In particular,
the regime a2

0 ∼ 1, such that Ld ∼ Lpd, has advantages
over the linear regime. In addition to not requiring den-
sity tapering, a single channel-guided stage with a2

0 ∼ 1
results in higher accelerating gradients, shorter channel
lengths, efficient depletion of the laser pulse energy, while
yielding comparable energy gains.

The the ideal energy gain in a standard LWFA can
be estimated by ∆W = eEzLacc, where Lacc is the ac-
celeration length and Ez = E0(a

2
0/2)(1 + a2

0/2)−1/2 is
the maximum electric field amplitude driven by an op-
timized flat-top, linearly polarized laser pulse in the 1D
limit (Esarey et al., 2004). If the acceleration distance is
limited by diffraction, Lacc ≃ πZR < Ld, Lpd, the energy
gain in practical units is

∆Wv[MeV] ≃ 740(λ/λp)(1 + a2
0/2)−1/2P [TW]. (44)

If the acceleration distance is limited by dephasing,
Lacc ≃ Ldeph, the energy gain is

∆Wd[MeV] ≃ 630I[W/cm
2
]

n[cm−3]
×
{

1, a2
0 ≪ 1,

(2/π)/Np, a2
0 ≫ 1.

(45)

If the acceleration distance is limited by depletion, Lacc ≃
Lpd, the energy gain is

∆Wpd[MeV] ≃
{

3.4 × 1021/(λ2[µm]n[cm−3]), a2
0 ≪ 1,

400I[W/cm
2
]/(n[cm−3]), a2

0 ≫ 1.

(46)
These estimates are based on the idealized assumptions
stated above and neglect various nonideal effects, such as
laser-plasma instabilities. The effects of various instabil-
ities are discussed in Sec. VI.

As an example, consider nonlinear a2
0 > 1 regime, such

that the dephasing length is approximately equal to the
depletion length. Consider a laser with P = 100 TW,
a0 = 3, λ = 0.8 µm, r0 = 18 µm, I = 1.9× 1019 W/cm2,
55 fs, and 5.5 J; along with a plasma with λp = 33 µm
(n0 = 1018 cm−3) such that LL = λp/2. For these param-
eters, the above expressions give a wakefield of Ez = 190
GeV/m, an acceleration length of Lacc = 3.8 cm, and an
energy gain of ∆W = 7.2 GeV.

The above scaling laws apply to a LWFA in the stan-
dard configuration (L ∼ λp) with a broad laser pulse
(k2

pr
2
0 ≫ 1) propagating in a density channel that pro-

vides guiding. For sufficiently high powers P ≫ Pcr,
it may be possible to guide the laser pulse over multi-
ple ZR without the use of a density channel due to a
combination of relativistic self-focusing and ponderomo-
tive self-channeling. This is this case in the so-called
blow-out or bubble regime (Pukhov and Meyer-ter-Vehn,
2002). Assuming that the energy gain is limited by
dephasing with a0 > 1 again implies ∆Wdeph[MeV] ≃
0.9(kpr0)

−2P [GW], using the above scaling law, only
now with the additional constraint P ≫ Pcr. Similar
scalings for the energy, i.e., ∆W ∼ P , can also be ob-
tained through analytical and numerical studies of the
blow-out regime. For example, Gordienko and Pukhov
(2005) obtain ∆WGP [MeV] ≃ 0.1(cτL/λ)(P [GW])1/2.
But if cτL = Rpλp, where Rp ∼ 1 is a constant, and
if P = RcrPcr, where Rcr ∼ 10 is a constant, then

∆WGP [MeV] ≃ 0.03RpR
−1/2
cr P [GW]. Lu et al. (2006)

find ∆WM [MeV] ≃ 0.5(λp/λ)
4/3(P [GW])1/3, which can

be written as ∆WM [MeV] ≃ 0.02R
−2/3
cr P [GW] assuming

P = RcrPcr.

Although ∆W is limited by depletion and dephasing
for both a channel-guided LWFA or a self-guided LWFA
with P ≫ Pcr, there may be additional advantages to
using a channel over relying on self-guiding. One obvi-
ous difference is that the additional constraint P ≫ Pcr

need not be satisfied when using a channel. This im-
plies that the channel-guided LWFA may be operated at
lower intensities (lower a0), which may be a more stable
regime. The channel may also provide some resistance
to instabilities, such as the laser-hose instability. With-
out a channel, the laser pulse will be subject to some
amount of diffractive erosion, since the head of the pulse
will not be self-guided, which can limit the propagation
distance. For example, if the pulse is self-guided for a
distance of L = RRZR, where RR ≫ 1 is the num-
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ber of Rayleigh lengths, then erosion will limit the en-
ergy gain and not dephasing when RRZR < Ldephase, or

RR(kpr0)
3 < 8.5(P [GW])1/2. Lastly, it is hoped that by

operating a channel-guided LWFA in the “dark-current-
free” mode (no self-trapping), a high quality electron
bunch can be obtained by injecting a low energy spread,
low emittance bunch into the LWFA. If the LWFA is to
be operated in the self-guided mode (i.e., the blow-out or
bubble regime), it may not be possible to operate in this
regime without self-trapping, which may limit the energy
spread and emittance of the accelerated bunch.

H. Beam loading

A relativistic, charged particle bunch moving through
a plasma can excite a wake in a manner similar to that of
an intense laser pulse. For a laser driver, the ponderomo-
tive force expels plasma electrons and initiates a wake.
For a relativistic electron bunch, the space charge force
of the bunch (with a relativistically large mass) displaces
plasma electrons (with a relativistically lighter mass) and
initiates a wake. The larger the charge in the bunch, the
larger the wake. In a plasma-based accelerator, the wake
from the accelerated bunch will be out of phase with, and
thus reduce, the wake generated by the drive beam. The
process by which the wake produced by the accelerated
bunch significantly modifies the fields of the accelerating
plasma wave is referred to as beam loading. Beam load-
ing can place severe limitations on the beam current that
can be accelerated, the quality of the accelerated particle
bunch, and the efficiency of the plasma-based accelerator.

The wakefield generated by a relativistic electron
bunch moving through a plasma can be calculated using
linear perturbation theory of the cold fluid-Maxwell equa-
tions (Katsouleas et al., 1987; Keinings and Jones, 1987;
Lu et al., 2005). The normalized density perturbation
δn/n0 < 1 and normalized axial electric field Ez/E0 < 1
driven in an initially uniform plasma by a short electron
bunch (with number density nb) are given by

(

∂2

∂ζ2
+ k2

p

)

δn

n0
= −k2

p

nb

n0
, (47)

(

∇2
⊥
− k2

p

) Ez

E0
= −kp

∂

∂ζ

δn

n0
, (48)

assuming the quasi-static approximation and a highly rel-
ativistic beam, βb ≃ 1, where cβb is the electron bunch
velocity. Solving Eq. (48) for a cylindrically-symmetric
beam yields

Ez/E0 = k3
p

∫ ζ

∞

dζ′
∫ ∞

0

dr′r′ cos[kp(ζ − ζ′)]

× I0 (kpr<)K0 (kpr>)nb(r
′, ζ′)/n0, (49)

where I0 and K0 are the zeroth-order modified Bessel
functions of the second kind, and r< (r>) denote the
smaller (larger) of r and r′, respectively. An electron

bunch will excite a plasma wave provided that the length
scale of the axial gradients in the bunch profile (e.g.,
the bunch length) is comparable to or shorter than the
plasma period, e.g., kpσz

<∼ 1, where σz is the bunch
length.

For a drive electron bunch with gaussian axial profile
of the form ρ(ζ) = nb exp(−ζ2/2σ2

z), the axial electric
field is given by

Ez/E0 = (2π)1/2(nb/n0)kpσz exp(−k2
pσ

2
z/2)FR. (50)

Note that the wakefield amplitude is maximum when
kpσz =

√
2. Here FR depends on the radial bunch profile.

For a flattop radial profile, ρ(r) = nb for r ≤ σr and zero
otherwise,

FR(r) =

{

1 − kpσrK1(kpσr)I0(kpr), for r < σr

kpσrI1(kpσr)K0(kpr), for r > σr
(51)

with I1 and K1 the first-order modified Bessel functions.
For a wide beam kpσr ≫ 1, FR(0) ≃ 1. For a narrow
beam kprb ≪ 1, HR ≃ (k2

pσ
2
r/2)[0.62− ln(kpσr)], assum-

ing kpσr ≪ 1. Note that for a gaussian radial profile,
ρ(r) = nb exp(−r2/2σ2

r), HR ≃ (k2
pσ

2
r )[0.058 − ln(kpσr)],

assuming kpσr ≪ 1.
The maximum number of bunch electrons that can be

loaded into a small (≪ λp) axial segment of a linear
wakefield for acceleration (i.e., the number of electrons
required to produce a wakefield that will cancel the ac-
celerating field, which defines the beam loading limit) is
(Katsouleas et al., 1987)

Nmax =
n0Ab

kp

Ez

E0
≃ 5 × 105

(

Ez

E0

)

Ab[cm
2]
√

n0[cm−3],

(52)
assuming Ez/E0 < 1, where Ab ≫ π/k2

p is the cross-
sectional area of the bunch. As the number of bunch
electrons N approaches Nmax, the energy spread scales
as N/Nmax and the efficiency of converting wake energy
to electron energy scales as (N/Nmax)(2 −N/Nmax).

IV. ELECTRON TRAPPING AND INJECTION

A. Trapping and Dark Current

The dynamics of an electron in the presence of a
plasma wave and a laser pulse is determined by the

Hamiltonian in the co-moving frame H =
(

γ2
⊥

+ p̃2
)1/2−

βpp̃ − φ, as discussed in Sec. II.E. The orbit of an elec-
tron with initial normalized momentum p̃t will be defined
by H = Ht = (1 + p̃2

t )
1/2 − βϕp̃t. Trapping of the elec-

tron will occur when the orbit defined by Ht coincides
with a trapped orbit, defined as lying with the separa-
trix orbit (defined by Hs), i.e., when Ht ≤ Hs. Solving
Ht = Hs yields in the minimum initial electron momen-
tum for trapping in the plasma wave (Schroeder et al.,



22

2006),

p̃t = γϕβϕ (γ⊥ − γϕφmin) − γϕ

[

(γ⊥ − γϕφmin)
2 − 1

]1/2

,

(53)
where φmin is the minima of the plasma wave poten-
tial. Figure 21 shows the initial momentum p̃t required
for the electron to be trapped by a plasma wave with
amplitude Êm = Epeak/E0, with γ⊥ = 1 for a warm
plasma [i.e., solving Eq. (21) for the wake potential] with
β2

th = kBT0/mc
2 = 10−4. The threshold momentum re-

quired for trapping decreases for larger plasma wave am-
plitude and for lower plasma wave phase velocity.

If the electric field can be well-approximated by the
cold result (i.e., E < EWB and βϕ ≫ βth), then the peak
field Et required for the onset of particle trapping as a
function of the initial electron momentum p̃t is given by
(Schroeder et al., 2006)

(Et/E0)
2 ≃ 2γ⊥ (γϕ − 1)

+ 2γ2
ϕβϕ

{

p̃t −
[

(βϕp̃t)
2
+ 2βϕp̃tγ⊥/γϕ

]1/2
}

, (54)

assuming p̃t ≪ 1 (non-relativistic initial momentum).
Note that trapping can always occur, even for plasma
waves with ultra-relativistic phase velocities (βϕ = 1),
as shown in Fig. 21. For γ⊥ = 1, βϕ = 1, and p̃t ≪ 1,
φmin ≃ −1 + p̃t and the peak field of an ultra-relativistic
plasma wave required for trapping an electron with initial

momentum p̃t is Et/E0 ≃ p̃
−1/2
t .

For a thermal plasma electron distribution, electrons
on the tail of the distribution may have sufficiently high
momentum so as to reside on trapped orbits. For exam-
ple, assuming an initial Gaussian momentum distribution
with initial RMS momentum spread β2

th = kBT0/mc
2,

i.e., a momentum distribution F (p̃) ∝ exp(−p̃2/2β2
th),

the fraction of trapped electrons is (Schroeder et al.,
2006)

ftrap =
1

2
erfc

(

p̃t/
√

2βth
)

, (55)

where p̃t is given by Eq. (53). Figure 22 shows the frac-
tion of trapped electrons versus the initial temperature of
a Gaussian plasma electron momentum distribution for
three different nonlinear plasma wave amplitudes driven
by a laser in a warm plasma [i.e., Êm determined via

Eq. (21)] with kpLRMS = 1 and a0 = 3.65 (Êm ≃ 1.75),

a0 = 4.15 (Êm ≃ 2), and a0 = 4.75 (Êm ≃ 2.25), with
γϕ = 10. The total number of trapped electrons (i.e.,
dark current in the plasma accelerator) can be estimated
from Eq. (55). For example, for a plasma density of
n0 = 1019 cm−3, driver transverse size of r⊥ = 10 µm,
and accelerator length of 1 mm, a trapping fraction of
ftrap = 10−3 indicates ∼ 0.1 nC of trapped charge. This
trapping calculation neglects beam loading, which im-
plies the wakefield induced by the trapped electrons is
much smaller than the primary plasma wave.

The particle trapping model can be used to estimate
the warm hydrodynamic wavebreaking limit. In par-
ticular, Eq. (54) obtained from trapping theory pro-
vides a good estimate to the hydrodynamic wavebreak-
ing field, Eq. (22), over regimes of interest for laser-

plasma accelerators, when p̃t =
√

3βth. This shows that
a significant fraction of the plasma electrons (satisfying

p̃t >
√

3βrmth) can be trapped at the wavebreaking am-

plitude: ftrap = erfc(
√

3/2)/2 ≃ 0.04 for an initial Gaus-
sian momentum distribution.

As the driver propagates into the plasma, more charge
will be trapped until the amplitude of the plasma wave
is substantially reduced due to beam loading. The beam
loading limit is defined as the number of accelerated elec-
trons required to produce a wakefield that cancels the
accelerating field of the plasma wave(Katsouleas et al.,
1987). The trapped bunch density is approximately nb ≃
ftrapn0z/Lb, where z is the propagation distance and Lb

is the bunch length. Assuming kpLb
<∼ 1, the wakefield

generated by the bunch is given by Eb/E0 ≃ kpLbnb/n0

in the 1D limit, assuming Eb/E0 < 1. The beam loading
limit at which Eb ≃ Em is then reached after a propa-
gation distance of zBL ≈ k−1

p f−1
trapÊm. For Êm ∼ 1 and

ftrap ≪ 1, kpzBL ≫ 1 and beam loading will only be
significant after propagating many plasma periods.

The warm fluid theory of wavebreaking and the trap-
ping calculation assume the quasi-static approximation,
i.e., the plasma wave is a traveling wave that is a function
of only ξ = z− vpt. This implies that there is sufficiently
small trapping and beam loading such that any time de-
pendent damping of the plasma wave is insignificant (i.e.,
kpzBL ≫ 1). At the wavebreaking amplitude, the fraction
trapped is ftrap ≃ 4% assuming a Gaussian momentum
distribution. For example, if the beam loading estimate
discussed above is assumed to approximately apply in
the nonlinear limit, then ftrap ≃ 4% and ÊWB ≃ 3 imply
zBL ≃ 12λp. This simple estimation implies that beam
loading can lead to appreciable reduction of the plasma
wave after several plasma periods if the field amplitude
approaches the hydrodynamic wavebreaking limit.

B. Trapping in the self-modulated LWFA

Perhaps the most basic and simplest form of a laser-
plasma injector is the self-modulated LWFA, in which a
single laser pulse results in self-trapping and generation
of a sub-ps electron bunch, however, with a large energy
spread. Typically the self-trapped bunch is of high charge
(up to 10 nC), with an energy distribution characterized
by a Boltzmann distribution with a few MeV tempera-
ture. One possible mechanism for self-trapping is the di-
rect wavebreaking of the plasma wakefield (Gordon et al.,
1998; Modena et al., 1995; Tzeng et al., 1997). Since the
phase velocity of the wakefield is very near the speed of
light, it is difficult to trap the background fluid electrons,
which are undergoing the fluid oscillation that sustains
the wakefield. The wake will trap the background elec-
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trons when the separatrix of the wake overlaps the plasma
fluid orbit. Wavebreaking of a cold plasma wave in 1D
occurs at EWB = [2(γp −1)]1/2E0 ≫ E0. As discussed in
Sec. II.D thermal and 2D effects can lower this value, but
typically wavebreaking requires nonlinear plasma waves
with Ez > E0. The observed wakefield amplitude, how-
ever, as measured in several experiments (Ting et al.,
1996), appears to be in the range Ez/E0 ∼10–30%, well
below wavebreaking. This suggests that additional laser-
plasma instabilities may play a role in lowering the effec-
tive wave breaking amplitude.

Alternatively, self-trapping and acceleration can result
from the coupling of Raman backscatter (RBS) and Ra-
man sidescatter (RSS) to the wakefield (Esarey et al.,
1998). As the pump laser self-modulates, it also under-
goes RBS, which is the fastest growing laser-plasma in-
stability (cf. Sec. VI.A). RBS is observed in intense short
pulse experiments, with reflectivities as high as 10–30%
(Rousseaux et al., 1995; Ting et al., 1996). RBS gen-
erates red-shifted backward light of frequency ω0 − ωp

and wavenumber −k0, which beats with the pump laser
(ω0, k0) to drive a ponderomotive wave (ωp, 2k0). As
the instability grows, the Raman backscatter beat wave,
which has a slow phase velocity vp ≃ ωp/2k0 ≪ c, can
trap and heat background plasma electrons (Bertrand
et al., 1995; Joshi et al., 1981). These electrons can gain
sufficient energy and be displaced in phase by the beat
wave such that they are trapped and accelerated to high
energies in the wakefield. Simulations (Esarey et al.,
1998) indicate that coupling to RBS can lead to self-
trapping at modest wakefield amplitudes, Ez/E0 ≃ 0.25,
much lower than the 1D threshold for wavebreaking.

In 2D, this process can be enhanced by coupling
to RSS. As the scattering angle decreases from 180◦

(backscatter), the Raman growth rate decreases and the
phase velocity of the Raman plasma wave increases. The
electrons that are initially trapped and heated by RBS
can be subsequently trapped by RSS modes propagat-
ing at smaller angles, which will accelerate the electrons
to higher energies (owing to the higher phase velocity of
the RSS modes) (Esarey et al., 1998; Joshi et al., 1981).
Eventually, these background electrons can be trapped
and accelerated to very high energies by the plasma wave
associated with the forward Raman instability or the self-
modulation instability, which has vp ≃ c.

When electrons become trapped in the fast wakefield,
they become accelerated to high energies as they circu-
late inside the separatrix of the wake. A large energy
spread for the trapped electrons results because (i) some
fraction of the background electrons are continually being
swept up and trapped in the wakefield as the laser pulse
propagates into fresh plasma, and (ii) typically the self-
guided propagation distance of the laser pulse is much
greater than the dephasing length for trapped electrons,
cf. Sec. II.E. In the self-modulated regime the dephasing
length can be very short, e.g., Ld < 50 µm. This implies
that deeply trapped electrons will circulate many revo-
lutions within the separatrix, again resulting in a large

energy spread. The maximum energy of the trapped elec-
trons is given by the maximum of the separatrix, which

corresponds to an energy Wmax ≃ 4γ2
pγ

1/2
⊥

mec
2Ez/E0,

for Ez/E0 ≪ 1, where γp is the phase velocity of the
plasma wave.

For many applications, a small energy spread is de-
sired. One method for improving the self-modulated
bunch quality is by post-acceleration. For example,
the self-modulated bunch could be immediately injected
into a second-stage composed of a standard LWFA with
L ∼ λp in which the wakefield is produced in a con-
trolled manner at an amplitude below the self-trapping
threshold. This could be achieved by using a plasma that
transitions from a high plasma density (λp ≪ L, self-
modulated LWFA) to a low plasma density (λp ∼ L, stan-
dard LWFA). Simulations (Reitsma et al., 2002) show
that in this two-stage acceleration scheme, about 40% of
the injected bunch charge can be trapped and accelerated
in the LWFA with a reduced energy spread.

C. Optical injection techniques

In principle, if a small energy spread electron bunch
of duration small compared to λp is injected into the
wakefield at the proper phase, then the bunch can be ac-
celerated while maintaining a small energy spread. This
becomes problematic in the LWFA, since the wavelength
of the accelerating field is small, e.g., λp ≃ 30 µm for
n0 ≃ 1018 cm−3. Hence, a low energy spread requires
an ultrashort bunch duration τb < λp/c that is injected
at the optimal plasma wave phase with femtosecond tim-
ing accuracy. These requirements are very challenging
for conventional electron beam injector technology (e.g.,
RF photo-injectors). On the other hand, the production
of ultrashort laser pulses and the femtosecond timing of
multiple pulses is routine with compact CPA technol-
ogy. As discussed below, ultrashort, high intensity laser
pulses can be used to inject electrons into a single bucket
(plasma wave period) of a standard LWFA (Esarey et al.,
1997a; Hemker et al., 1998; Schroeder et al., 1999a; Um-
stadter et al., 1996b).

1. Ponderomotive injection

Umstadter et al. (1996b) first proposed using an addi-
tional laser pulse to inject background plasma electrons
into the wake for acceleration to high energies. To gener-
ate ultrashort electron bunches with low energy spreads,
the original laser injection method of (Umstadter et al.,
1996b) uses two laser pulses which propagate perpen-
dicular to one another. The first pulse (pump pulse)
generates the wakefield via the standard LWFA mech-
anism, and the second pulse (injection pulse) intersects
the wakefield some distance behind the pump pulse. The
ponderomotive force Fp ≃ −(mec

2/γ̃)∇a2/2 of the in-
jection pulse can accelerate a fraction of the plasma elec-
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trons such that they become trapped in the wakefield.
Specifically, the axial (direction of propagation of the
pump pulse along the z-axis) ponderomotive force of the
injection pulse (propagating along the x-axis) scales as

Fz = −(mec
2/γ̃)(∂/∂z)a2

1/2 ∼ (mec
2/γ̃)a2

1/r1, (56)

where a2
1 and r1 are the normalized intensity and spot

size of the injection pulse, respectively. A simple esti-
mate for the change of momentum that an electron will
experience owing to the ponderomotive force of the injec-
tion pulse is ∆pz ≃ Fzτ1 ∼ (mec

2/γ̃)a2
1τ1/r1, where τ1 is

the injection pulse duration. It is possible for ∆pz to be
sufficiently large that electrons are injected into the sep-
aratrix of the wakefield such that they become trapped
and accelerated to high energies. To inject into a single
plasma wave bucket, it is necessary for both the injection
pulse spot size and pulse length to be small compared to
the plasma wavelength, i.e., r21 ≪ λ2

p and c2τ2
1 ≪ λ2

p.
Simulations (Umstadter et al., 1996b), which were per-
formed for ultrashort pulses at high densities (λp/λ = 10
and Ez/E0 = 0.7), indicated the production of a 10 fs,
21 MeV electron bunch with a 6% energy spread. How-
ever, high intensities (I > 1018 W/cm2) are required in
both the pump and injection pulses (a0 ≃ a1 ≃ 2). In
the work of Umstadter et al. (1996b), the pump and in-
jection pulses do not overlap in space and time, and a
laser beat wave is not generated, as discussed below.

Simulations by Hemker et al. (1998) point out that
additional electron injection into one or more wake buck-
ets can result through the influence of the wake asso-
ciated with the injection pulse, which can be signifi-
cant because of the high intensity of the injection pulse
(a1

>∼ 1). Umstadter et al. (1996b) also discuss the pos-
sibility of injection using an injection pulse that prop-
agates parallel, but some distance behind, the pump
pulse. The injection pulse would have a tighter focus (and
hence smaller Rayleigh length) than the pump pulse,
and would be phased appropriately such that it locally
drives the wakefield to an amplitude that exceeds the self-
trapping threshold, thus resulting in local trapping and
acceleration of electrons. In addition, Umstadter et al.

(1996b) discusses the possibility of the injection pulse be-
ing focused to sufficiently high intensity such that it pro-
duces locally additional ionization. The ionized electrons,
which are born dephased from the background plasma
electron in the wake, could become trapped and acceler-
ated by the wake. Injection by laser-induced ionization
and ponderomotive acceleration has also been discussed
by Moore et al. (1999). Experiments in the high-density
regime of laser ionization and ponderomotive accelera-
tion have demonstrated electron injection by this method
(Ting et al., 2005).

2. Colliding pulse injection

Beat wave injection using colliding laser pulses (Esarey
et al., 1997a, 1999; Fubiani et al., 2004; Kotaki et al.,

2004; Schroeder et al., 1999a) differs intrinsically from
the method of ponderomotive injection discussed above
in that the source and form of the ponderomotive force
differs in these two methods. In ponderomotive injection,
injection is the result of the ponderomotive force associ-
ated with the envelope (time-averaged intensity profile)
of a single pulse. In beat wave injection, injection is the
result of the ponderomotive force associated with the slow

beat wave of two intersecting pulses. Beat wave injection
was first proposed and analyzed by Esarey et al. (1997a)
in a concept referred to as colliding pulse injection.

Colliding pulse injection (Esarey et al., 1997a, 1999;
Schroeder et al., 1999a) uses three short laser pulses: an
intense (a2

0 ≃ 1) pump pulse (denoted by subscript 0) for
plasma wave generation, a forward going injection pulse
(subscript 1), and a backward going injection pulse (sub-
script 2), as shown in Fig. 23. The frequency, wavenum-
ber, and normalized intensity are denoted by ωi, ki, and
ai (i = 0, 1, 2). Furthermore, it is assumed that k1 ≃ k0,
k2 ≃ −k0, and ω1−ω2 = ∆ω ≫ ωp. The pump pulse gen-
erates a plasma wave with phase velocity near the speed
of light (vp0 ≃ c). The forward injection pulse travels at a
fixed distance behind the pump pulse, which determines
the position (i.e., phase) of the injected electrons. The
injection pulses are orthogonally polarized to the pump
laser pulse, such that the pump pulse and backward going
injection pulse do not beat.

When the injection pulses collide some distance behind
the pump, they generate a slow ponderomotive beat wave
of the form a1a2 cos(∆kz − ∆ωt) (here ∆k = k1 − k2 ≃
2k0) with a phase velocity vpb ≃ |∆ω|/2k0 ≪ c. The
axial force associated with this beat wave scales as

Fz = −(mec
2/γ̃)(∂/∂z)a1a2 cos(2k0z − ∆ωt)

∼ (mec
2/γ̃)2k0a1a2.

(57)

During the time in which the two injection pulses overlap,
a two-stage acceleration process can occur, i.e., the slow
beat wave traps and heats background plasma electrons
which, as a result of shifts in their momentum and phase,
can be injected into the fast wakefield for acceleration to
high energies.

The ratio of the axial force of the beat wave to that of a
single pulse in the ponderomotive injection scheme (ow-
ing to the gradient in the envelope of the laser intensity)
scales as

Fz,beat

Fz,env
∼ 2k0a1a2

a2
p/rp

, (58)

where the subscript p refers to the single ponderomotive
injection pulse and the contribution of the relativistic
Lorentz factor γ̃ (which is different for the two cases)
is neglected. For comparable injection pulse intensi-
ties (a1 ≃ a2 ≃ ap), the ratio scales as 4πrp/λ0 ≫ 1,
i.e., the axial force of the beat wave is much greater
than the ponderomotive force from the intensity enve-
lope of a single pulse. Consequently, colliding pulses can
result in electron injection at relatively low intensities
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(a1 ∼ a2 ∼ 0.2), as well as at relatively low densities
(λp/λ ∼ 100), thus allowing for high single-stage energy
gains. Furthermore, the colliding pulse concept offers de-
tailed control of the injection process: the injection phase
can be controlled via the position of the forward injec-
tion pulse, the beat phase velocity via ∆ω, the injection
energy via the pulse amplitudes, and the injection time
(number of trapped electrons) via the backward pulse
duration.

To help understand the injection mechanism, it is in-
sightful to consider the electron motion in the wake-
field and in the colliding laser fields individually. In
the absence of the injection pulses, electron motion in
a 1D wakefield is described by the Hamiltonian Hw =
γ̃−βp(γ̃

2−1)1/2−φ(ψ), cf. Sec. II.E, where φ = φ0 cosψ,
vp = cβp is the phase velocity of the plasma wave,

γp = (1− β2
p)−1/2, and ψ = kp(z− vpt). The electron or-

bits in phase space (p̃z, ψ) are given by Hw(p̃z, ψ) = H0,
where H0 is a constant, γ̃2 = 1 + p̃2

z, and p̃z is the nor-
malized (to mec) axial momentum of an electron, which
is given by

p̃z = βpγ
2
p [H0 + φ(ψ)] ± γp

{

γ2
p [H0 + φ(ψ)]

2 − 1
}1/2

.

(59)
The 1D separatrix (the boundary between trapped and
untrapped orbits) is given by Hw(p̃z , ψ) = Hw(γpβp, π),
i.e., H0 = H1D = 1/γp − φ(π). The maximum and
minimum electron momentum on the 1D separatrix oc-
cur at ψ = 0 and are (in the limits 2φ0γp ≫ 1 and
γp ≫ 1) p̃w,max ≃ 4γ2

pφ0 and p̃w,min ≃ (4φ0)
−1 − φ0.

The 1D theory neglects the effects of transverse focus-
ing. Associated with a 3D wake is a periodic radial field
which is π/2 out of phase with the accelerating field,
i.e., there exists a phase region of λp/4 for which the
wake is both accelerating and focusing (as opposed to
the λp/2 accelerating region in 1D). If an electron is to
remain in this phase region, it must lie within the “3D
separatrix” defined by Hw(p̃z, ψ) = Hw(γpβp, π/2), i.e.,
Eq. (59) withH0 = H3D = 1/γp−φ(π/2). The extremum
on the 3D separatrix are given by p̃w,max ≃ 2γ2

pφ0 and

p̃w,min ≃ (φ−1
0 − φ0)/2. This value of p̃w,max ≃ 2γ2

pφ0

gives the usual maximum energy gain due to linear de-
phasing in a 3D wake.

The background plasma electrons lie on an untrapped
orbit (below the separatrix) p̃zf given by Hw(p̃zf , ψ) = 1,
i.e., Eq. (59) with H0 = 1. At wavebreaking, the bottom
of the separatrix p̃w,min coalesces with the plasma fluid
orbit, p̃zf = p̃w,min. This occurs at the well-known cold

wavebreaking field of EWB/E0 = [2(γp − 1)]1/2.
Consider the motion of electrons in the colliding laser

fields in the absence of the wakefield. The beat wave leads
to formation of phase space buckets (separatrices) of
width 2π/∆k ≃ λ0/2, which are much shorter than those
of the wakefield (λp). In the colliding laser fields, the
electron motion is described by the Hamiltonian (Esarey

et al., 1997a) Hb = γ̃ − βb

[

γ̃2 − γ2
⊥

(ψb)
]1/2

, where the
space charge potential is neglected. Circular polarization

is assumed such that γ2
⊥

= 1+a2
0+a

2
1+2a0a1 cosψb, where

ψb = (k1 − k2)(z − vbt) and vb = cβb = ∆ω/(k1 − k2) ≃
∆ω/2k0 is the beat phase velocity, assuming ω2

p/ω
2
0 ≪ 1.

The beat separatrix is given by Hb(p̃z, ψb) = Hb(γbβb, 0)
with a maximum and minimum axial momenta of

p̃b,m = γbβb

[

1 + (a0 + a1)
2
]1/2 ± 2γb(a0a1)

1/2. (60)

An estimate for the threshold for injection into the
wakefield can be obtained by a simple phase-space island
overlap criteria. This is done by considering the effects
of the wakefield and the beat wave individually, as done
above, and by requiring that the beat wave separatrix
overlaps both the wakefield separatrix and the plasma
fluid oscillation (illustrated in Fig. 24): (i) the maximum
momentum of the beat wave separatrix p̃b,max exceeds the
minimum momentum of the wakefield separatrix p̃w,min,
i.e., p̃b,max ≥ p̃w,min, and (ii) the minimum momentum of
the beat wave separatrix p̃b,min be less than the plasma
electron fluid momentum p̃zf , i.e., p̃b,min ≤ p̃zf . Con-
ditions (i) and (ii) imply a beat wave threshold (Esarey
et al., 1997a; Schroeder et al., 1999a)

(a1a2)
1/2
th =

(1 −H0)

4γb(βp − βb)
, (61)

and an optimal wake phase for injection (location of the
forward injection pulse)

cosψopt = φ−1
0 [(1 − βbβp)γbγ⊥(0) − (1 +H0)/2] , (62)

where H0 = H1D = 1/γp + φ0 for the 1D wake separa-
trix and H0 = H3D = 1/γp for the 3D wake separatrix
(trapped and focused). In the limits γ2

p ≫ 1, β2
b ≪ 1,

and a2
i ≪ 1, Eqs. (61) and (62) become 4(a1a2)

1/2
th ≃

(1 −H0)(1 + βb) and 2φ0 cosψopt ≃ 1 − H0 − 2βb with
H1D ≃ φ0 and H3D ≃ 0. As an example, φ0 = 0.7, βb =

−0.02, and γp = 50 imply a threshold of (a1a2)
1/2
th ≃ 0.25

and an optimal injection phase of ψopt ≃ 0 for injection
onto a trapped and focused orbit.

To further evaluate the colliding laser injection
method, the motion of test particles in the combined
wake and laser fields was simulated in 3D (Schroeder
et al., 1999a). In the numerical studies, the laser pulse
axial profiles were half-period sine waves (linearly polar-
ized with Gaussian radial profiles) with peak amplitude
ai and length Li. The wakefield is assumed to be nonzero
for ψ ≤ 3π/4 (see Fig. 23) and the test particles are
loaded uniformly with ψ > 3π/4 (initially at rest).

An example of the injection process is given in Fig. 25,
which shows the evolution in longitudinal phase space of
the test electron distribution (a) before the collision of
the injection laser pulses (in the untrapped fluid orbit of
the wake) at ωpt = 36, (b) during the collision (crossing
the wake separatrix) at ωpt = 39, (c) after the collision at
ωpt = 50, and (d) the resulting energetic electron bunch
at ωpt = 150. Fig. 25 also shows the 1D wake separatrix.
The parameters are a1 = a2 = 0.32, L0 = 4L1 = 4L2 =
λp = 40 µm, φ0 = 0.7, λ0 = λ2 = 0.8 µm, λ1 = 0.83 µm,
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and r0 = r1 = r2 = 15 µm, with the position of the
forward injection pulse centered at ψinj = −12.6. Af-
ter z ≃ 0.7 mm of propagation following the collision,
Fig. 25(d), the bunch length is 1 fs with a mean energy
of 38 MeV, a fractional energy spread of 0.2%, and a
normalized transverse emittance of 0.9 mm-mrad. The
trapping fraction ftrap is 3%, corresponding to 2.6 × 106

bunch electrons. Here, ftrap is defined as the fraction
of electrons trapped that were initially loaded in a re-
gion of length λp/4 with r ≤ 2 µm (simulations indicate
that electrons loaded outside this region are not trapped).
Note that the bunch number can be increased by increas-
ing the laser spot sizes (i.e., laser powers). For example,
when the laser spot sizes are doubled, ri = 30 µm in the
simulation of Fig. 25 (all other parameters as in Fig. 25),
the number of trapped electrons increases to 1.5×107 and
the normalized transverse emittance increases to 3.9 mm-
mrad. Estimates indicate that space charge effects can
be neglected while the bunch remains inside the plasma
(Schroeder et al., 1999a).

Colliding pulse injection can also be envisioned using
two laser pulses, with the same polarization, such that
the tail of the pump laser pulse beats with the coun-
terpropagating pulse, trapping electrons in the plasma
wave (Fubiani et al., 2004; Kotaki et al., 2004). The
initial set of optical trapping experiments use this sim-
pler two-pulse geometry (Faure et al., 2006; Kotaki, 2007;
Leemans, 2004; Nakamura et al., 2004) are discussed in
Sec. VII.C.

D. Density transitions

Bulanov et al. (1998) describe how a downward tran-
sition in the plasma density with a scale length Ltr

long compared to λp could be used to induce local self-
trapping in the plasma wave. Consider the position of a
phase peak on a plasma wave of the form φ = φ0 cos kpζ
(where −ζ = ct − z is the distance behind the drive
beam) located N periods behind the drive beam. Be-
fore the density transition, the phase peak is located at
|ζ1| = Nλp1, and after the transition, the phase peak
is located at |ζ2| = Nλp2, where λp1 (n1) and λp2 (n2)
are the plasma wavelengths (densities) before and after
the transition with λp1 < λp2 (n1 > n2). The density
transition changes the location of the phase peak by the
relative amount ∆|ζp| = N(λp1 − λp2). If this transition
occurs over a length Ltr, then the change in the phase ve-
locity is ∆vp/c ≃ N(λp1−λp2)/Ltr. This effect increases
proportional to the distance behind the driver (increas-
ing N), as well as the magnitude of the density gradient,
(λp1 − λp2)/Ltr ≃ dλp/dz = −(λp/2n)dn/dz.

More rigorously, the phase velocity of the wake during
a density transition can be calculated by considering the
local phase of the wake, which is given to leading order by
ψ = kp(z)(z − ct), where vg ≃ c has been assumed since
changes to the group velocity due to a slow variation in
density are small in an underdense plasma ω2

p/ω
2 ≪ 1.

Using the definitions of the effective frequency ωp,eff =
−∂ψ/∂t and wavenumber kp,eff = ∂ψ/∂z of the plasma
wave, the local phase velocity of the wake is given by
vp = ωp,eff/kp,eff , i.e.,

vp/c = [1 + (ζ/kp)dkp/dz]
−1. (63)

For a small variation, vp/c − 1 ≃ −(ζ/kp)dkp/dz =
−(ζ/2n)dn/dz. Since ζ < 0 behind the drive pulse, the
wake phase velocity will decrease for decreasing density
dn/dz < 0.

Local wave breaking of the wake will occur at the point
at which the local phase velocity equals the fluid veloc-
ity of the plasma electrons. To leading order, the size of
the fluid oscillation depends on the intensity of the drive
pulse, the pulse length, and the local plasma density.
Since the “resonance” for exciting a large amplitude wake
is rather broad, L ∼ λp (weakly dependent on density), a
large wake can be excited on the density ramp with a fluid
velocity given approximately by ve/c ≃ Ez/E0, where
Ez/E0 ≪ 1 is the normalized electric field amplitude of
the wake. According to fluid theory, wavebreaking of a
wake will always occur on a density down ramp at a suf-
ficiently large distance behind the drive pulse (assuming
the wake is not damped by some other mechanism), since
Eq. (63) indicates that the wake phase velocity will con-
tinue to decrease as a function of time for a fixed point
on the density down ramp. Using Eq. (63), wavebreak-
ing (vp = ve) will occur at a distance behind the drive
pulse given by ζ = 2(c/ve − 1)n/(dn/dz). For example,
if ve/c = 1/3 and Ltr = n|dn/dz|−1 = 3λp, then wave-
breaking occurs at |ζ| = 12λp.

Bulanov et al. (1998) performed 1D particle-in-cell
simulations of a laser pulse with a0 = 2 and L = 12λ
propagating in a plasma with λp1 = 23.4λ, λp2 = 25λ,
and Ltr = 24λ. These simulations found that the plasma
wave breaks on the ramp and injects a significant num-
ber of electrons into the wake, in apparently the sec-
ond bucket behind the laser pulse, which are acceler-
ated to high energy but with a large energy spread.
Tomassini et al. (2003) preformed 2D particle-in-cell
simulations showing generation of well-collimated, short
electron beams via a decreasing plasma density gradient.

Suk et al. (2001) consider the limit of a step function
downward plasma density transition (n1 = 5×1013 cm−3

and n2 = 3.5 × 1013 cm−3) and a wake generated by an
electron beam driver of energy 16 MeV, bunch length
0.16λp2, bunch radius 0.089λp2, and peak density nb =
2.4n1 = 3.4n2. Using 2D particle-in-cell simulations, the
trapped electron bunch, after propagating a few plasma
wavelengths past the transition, had a total charge near
0.5 nC, a bunch length near 0.09λp2, and electron ener-
gies in the range 5–15 MeV. Trapping across a parabolic
density profile, which has the advantage of ease of exper-
imental production and control, has also been considered
(Kim et al., 2004). Electron injection via a sharp laser-
induced plasma density ramp (scale length of ramp less
than the plasma wavelength) has been demonstrated in
the self-modulated LWFA regime (Chien et al., 2005).
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V. PULSE PROPAGATION AND GUIDING

To describe laser pulse propagation in a fully-ionized
plasma, it is convenient to represent the electric E and
magnetic fields B by the scaler Φ and vector A poten-
tials, E = −∇Φ − ∂A/∂ct and B = ∇× A, and to use
Coulomb gauge, ∇ · A = 0. In terms of the normalized
potentials φ = eΦ/mec

2 and a = eA/mec
2, the wave

equation and the Poisson equation are given by, respec-
tively,

(

∇2 − 1

c2
∂2

∂t2

)

a = k2
p

n

n0

u

γ
+

1

c

∂

∂t
∇φ, (64)

∇2φ = k2
p (n− ni) /n0, (65)

where u = γv/c = p/mec is the normalized electron
fluid momentum, γ = (1 − β2)1/2 = (1 + u2)1/2 is the
relativistic Lorentz factor, n is the plasma electron den-
sity, ni is the initial density profile (prior to the passage
of the laser pulse), n0 = ni(r = 0) with r = 0 corre-
sponding to the direction of propagation (the z-axis), and
ωp0 = ckp = (4πn0e

2/me)
1/2. Here and in the following,

it is assumed that the ions remain stationary, which is
typical for short pulse lasers (<∼ 1 ps) propagating in un-
derdense plasma (ω2

p0/ω
2 ≪ 1). Furthermore, collisions

and thermal effects are neglected, since the collision time
is typically much greater than the laser pulse length and
the thermal velocity is typically much less than the quiver
velocity of an electron in the laser field.

The first term on the right-hand side of Eq. (64) is the
contribution due to the plasma current J . In the cold
fluid limit, J = −enu/γ, where the plasma density n
and momentum u satisfy the continuity and momentum
equations, which are given by, respectively,

∂n/∂ct+ ∇ · (nu/γ) = 0, (66)

[∂/∂ct+ (u/γ) · ∇] u = ∇φ+ ∂a/∂ct− (u/γ)× (∇×a).
(67)

It is also convenient to introduce the independent vari-
ables ζ = z − ct and τ = t, where ζ is an approximate
measure of the distance back from the head of the pulse
(which is moving with a group velocity vg ≃ c). Initially,
the front of the laser pulse is assumed to be at ζ = 0 and
the pulse body extends into the region ζ ≤ 0 (the plasma
is unperturbed in the region ζ > 0). In terms of the ζ, τ
coordinates, the wave equation is given by (Esarey et al.,
1993a)

(

∇2
⊥

+
2

c

∂2

∂ζ∂τ
− 1

c2
∂2

∂τ2

)

a ≃ k2
p

n

n0γ
u. (68)

On the right-hand side of Eq. (68), the term ∇∂φ/∂ct
has been neglected, since the fast part of the electrostatic
potential, φ ∼ exp(ikζ), is typically small compared to
relevant terms contributing to the fast part of the plasma
current. Typically, the third term on the left-hand side

of Eq. (68) can be neglected. As discussed in Sec. II,
the leading order transverse motion is the quiver motion.
Hence, for a wide variety of phenomena, it is sufficient to
approximate u = a on the right-hand side of Eq. (68).

The wave equation can be further simplified by the
slowly varying envelope approximation. Assuming a lin-
early polarized laser field with a transverse component
of the form af = âs(r, ζ, τ) exp(ikζ)/2 + c.c., the wave
equation describing the evolution of the slowly varying
amplitude âs is given by

(

∇2
⊥

+ 2iω
∂

∂τ
+

2

c

∂2

∂ζ∂τ

)

âs = k2
pρsâs, (69)

where ρs = (n/n0)/γ, u⊥f ≃ af , ω = ck is the laser fre-
quency, and the subscripts f and s denote the fast and
slow components, respectively. The small term ∂2/∂τ2

has been neglected in the wave operator, however, the
∂2/∂ζ∂τ term is retained so as to correctly describe vari-
ations in the laser pulse group velocity. The paraxial ap-
proximation is the result of neglecting the term ∂2/∂ζ∂τ .
Throughout the following, the subscripts s and f will be
dropped for convenience.

A useful approximation in the study of short pulse in-
teractions with plasmas is the quasi-static approximation
(QSA), which was first applied to nonlinear laser-plasma
interactions by Sprangle et al. (1990a,b). In the QSA,
the plasma fluid equations are written in terms of the
independent variables ζ and τ , as above. The QSA as-
sumes that in the time it takes the laser pulse to transit
a plasma electron (i.e., the slippage time for an electron
through the laser pulse), the laser pulse does not signifi-
cantly evolve. In other words, τL ≪ τE , where τL = L/c
is the laser pulse duration and τE is the laser pulse evolu-
tion time, which is typically one the order of a Rayleigh
(diffraction) length. Thus the plasma electrons experi-
ence a static (independent of τ) laser field. In the QSA,
the ∂/∂τ derivatives are neglected in the plasma fluid
equations which determine the plasma response to the
laser pulse. The ∂/∂τ derivatives, however, are retained
in the wave equation which describes the evolution of the
laser pulse. The QSA allows the laser-plasma interaction
to be calculated in an iterative fashion. For a fixed τ ,
the plasma response to the laser field is determined as
a function of ζ by solving the QSA fluid equations [e.g.,
Eq. (16) in the 1D limit]. Using this fluid response, the
wave equation is then solved to update the laser pulse in
τ .

The fluid quantity ρ = n/γn0 in Eq. (69) can deter-
mined from the quasi-static fluid equations. For example,
in the 1D limit, it can be shown (Esarey et al., 1993b)
that ρ ≃ (1+φ)−1, where φ satisfies Eq. (16). In 2D and
assuming vg ≃ c, it can be shown (Krall et al., 1994) that

ρ ≃ (1 + Ψ)−1(ρ0 + k−2
p ∇2

⊥Ψ), (70)

where ρ0 is the initial value of ρ (prior to the laser pulse)
and the quantity Ψ = φ− az satisfies

∂2Ψ

∂ζ2
=
(

k2
pρ−∇2

⊥

)

uz +
∂

∂ζ
∇⊥ · u⊥, (71)
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with u⊥ = (k2
pρ)

−1∂ζ(∇⊥Ψ) and uz = [u2
⊥

+ a2 − Ψ(2 +
Ψ)]/[2(1 + Ψ)]. The wake potential Ψ is related to the

axial electric field Ez induced in the plasma by kpÊz =

−∂Ψ/∂ζ, where Êz = Ez/E0 and E0 = mecωp0/e is the
cold, nonrelativistic wavebreaking field.

A useful quantity in discussing phenomena such as op-
tical guiding is the index of refraction ηr. The effec-
tive index of refraction ηr is defined by setting the right-
hand side of Eq. (69) equal to k2(1 − η2

r )a, which yields
ηr ≃ 1 − k2

pρ/2k
2.

A. Optical guiding in plasmas

The optical guiding mechanisms (Esarey et al., 1997b)
discussed below are based on the principle of refractive
guiding. Refractive guiding becomes possible when the
radial profile of the index of refraction, ηr(r), exhibits a
maximum on-axis, i.e., ∂ηr/∂r < 0. Since ηr ≃ ckz/ω,
∂ηr/∂r < 0 implies that the phase velocity along the
propagation axis is less than it is off-axis. This causes
the laser phase fronts to curve such that the beam focuses
towards the axis.

The index of refraction for a small amplitude elec-
tromagnetic wave propagating in a plasma of uniform
density n = n0, in the 1D limit, is given by ηr =
(1−ω2

p/ω
2)1/2. For large amplitude waves, however, vari-

ations in the electron density and mass will occur, i.e.,
ω2

p → (ω2
p0/γ)n/n0. Hence, the general expression for

the index of refraction for a large amplitude electromag-
netic wave in a plasma is given by (Sprangle et al., 1992,
1990b)

ηr(r) ≃ 1 −
ω2

p0

2ω2

n(r)

n0γ(r)
, (72)

assuming ω2
p0/ω

2 ≪ 1. The index of refraction profile
ηr(r) can be modified by the relativistic factor γ(r) or
the radial density profile n(r). The leading order mo-
tion of the electrons in the laser field is the quiver mo-
tion p⊥ = meca and, hence, γ ≃ γ⊥ = (1 + a2)1/2.
A laser intensity profile peaked on-axis ∂a2/∂r < 0
leads to ∂ηr/∂r < 0 and the possibility of guiding (i.e.,
relativistic self-focusing). The density profile can have
contributions from a preformed density channel ∆np ∼
∆nr2/r20 or a plasma wave δn ∼ δn̂(r) cos kpζ, where
n = n0 + ∆np + δn. A radial density profile which has
a minimum on-axis (i.e., a channel) implies ∂ηr/∂r < 0
and the possibility of guiding. In the limits a2 ≪ 1,
|∆np/n0| ≪ 1 and |δn/n0| ≪ 1, the refractive index is
(Esarey et al., 1996)

ηr ≃ 1 −
ω2

p0

2ω2

(

1 − a2

2
+

∆np

n0
+
δn

n0

)

. (73)

In the above expression, the a2/2 term is responsi-
ble for relativistic optical guiding (Litvak, 1969; Max
et al., 1974; Sprangle et al., 1987a; Sun et al., 1987), the

∆np/n0 term is responsible for preformed density channel
guiding (Durfee III et al., 1995; Durfee III and Milchberg,
1993; Gaul et al., 2000; Geddes et al., 2004, 2005a; John-
son and Chu, 1974; Sprangle and Esarey, 1992; Spran-
gle et al., 1992; Steinhauer and Ahlstrom, 1971; Volf-
beyn et al., 1999), and the δn/n0 term is responsible for
self-channeling (Esarey et al., 1993a; Kurki-Suonio et al.,
1989b; Sprangle et al., 1992; Sun et al., 1987), plasma
wave guiding (Esarey and Ting, 1990; Sprangle et al.,
1990a; Ting et al., 1990), and self-modulation of long
laser pulses (Andreev et al., 1992; Antonsen, Jr. and
Mora, 1992; Esarey et al., 1994; Sprangle et al., 1992).

B. Relativistic optical guiding

The self-focusing of laser beams by relativistic effects
was first considered by Litvak (1969) and Max et al.

(1974). In the standard theory of relativistic optical
guiding (Sprangle et al., 1987a), only the effects of the
transverse quiver motion of the electrons are included
in the expression for ηr, i.e., n = n0 and γ = γ⊥(r),
where γ2

⊥
= 1 + a2(r) and circular polarization is as-

sumed. Inclusion of the self-consistent density response,
however, indicates that relativistic self-focusing is ineffec-
tive in preventing the diffraction of short (L <∼ λp) laser
pulses (Sprangle et al., 1992, 1990a).

In the weakly-relativistic limit (a2 ≪ 1), the refractive
index is given by

ηr ≃ 1 − (ω2
p0/2ω

2)(1 − a2/2), (74)

where the density response has been neglected (n = n0).
Refractive guiding requires ∂ηr/∂r < 0, which is satisfied
for a laser intensity profile peaked on-axis, ∂a2/∂r < 0.
The paraxial wave equation with a refractive index given
by Eq. (74) has the form of a Schrödinger equation with
a third order nonlinearity, as in nonlinear optics where
ηr = η0 + η2I. Hence, self-focusing will occur when the
laser power P exceeds a critical power Pc (Sprangle et al.,
1987a).

An equation for the laser spot size rs(ζ, z) can be de-
rived by applying a method such as the source depen-
dent expansion (SDE) method (Sprangle et al., 1987b)
to the paraxial wave equation [Eq. (69) neglecting the
term ∂2/∂ζ∂τ ]. In effect, the SDE method assumes that
the radial intensity profile is approximately Gaussian,
|a|2 = (a0r0/rs)

2 exp(−2r2/r2s), and finds a best fit for
the spot size rs(ζ, z) locally in space and time. Using the
index of refraction given by Eq. (74), the laser spot size
evolves according to (Sprangle et al., 1987a)

d2R

dz2
=

1

Z2
RR

3

(

1 − P

Pc

)

, (75)

where R = rs/r0 is the normalized spot size, r0 is
the minimum spot size in vacuum, and ZR = kr20/2
is the vacuum Rayleigh length. The first term on the
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right-hand side of Eq. (75) represents vacuum diffrac-
tion, whereas the second term term represents relativis-
tic self-focusing. Here, P/Pc = k2

pa
2
0r

2
0/16 for circu-

lar polarization (for linear polarization, a2
0 → a2

0/2).
The critical power for relativistic self-focusing is Pc =
2c(e/re)

2(ω/ωp0)
2, where re = e2/mec

2, or in practical
units,

Pc(GW) ≃ 17.4 (ω/ωp0)
2. (76)

The solution to Eq. (75) with drs/dz = 0 at z = 0 is

r2s/r
2
0 = 1 + (1 − P/Pc)z

2/Z2
R, (77)

which indicates that the spot size diffracts for P < Pc, re-
mains guided or “matched” (rs = r0) for P = Pc, and fo-
cuses for P > Pc. Equation (75) predicts “catastrophic”
focusing for P > Pc. This results from the approximation
(1+a2)−1/2 ≃ 1−a2/2 in the a2 ≪ 1 limit. Higher-order
nonlinearities will prevent the laser from focusing indefi-
nitely (Sprangle et al., 1987a).

The above discussion of relativistic guiding neglected
the electron density response δn in the expression for
the index of refraction. The effectiveness of relativis-
tic guiding can be strongly influenced by the plasma re-
sponse. In particular, relativistic optical guiding is inef-
fective in preventing the diffraction of sufficiently short
pulses, L <∼ λp/γ⊥ (Sprangle et al., 1992, 1990a), be-
cause the index of refraction becomes modified by the
laser pulse on the plasma frequency time scale, not the
laser frequency time scale. Typically, relativistic guiding
only affects the body of long pulses, L > λp.

In the 1D (r2sk
2
p ≫ 1) and weakly-relativistic (a2 ≪

1) limits, nonlinear quasi-static theory (Sprangle et al.,
1990a) indicates that the self-consistent electron density
response satisfies δn/n0 − a2/2 ≃ −δφ, hence,

ηr ≃ 1 − (ω2
p0/2ω

2)(1 − δφ), (78)

where δφ is the normalized electrostatic potential which
satisfies

(

∂2/∂ζ2 + k2
p

)

δφ = k2
pa

2/2. (79)

For long laser pulses with sufficiently smooth envelopes,
|∂a2/∂ζ| ≪ |kpa

2|, ∂2φ/∂ζ2 can be neglected in Eq. (79)
(which neglects the generation of plasma waves) and
δφ ≃ a2/2. Hence, in the long pulse limit L ≫ λp, the
index of refraction has the form given by Eq. (73) and the
standard theory of relativistic focusing discussed above
can be applied to the body of long pulses. Although long
pulses can be guided by relativistic effects, they can also
be unstable to self-modulation (Andreev et al., 1992; An-
tonsen, Jr. and Mora, 1992; Sprangle et al., 1992) and
laser-hose instabilities (Shvets and Wurtele, 1994; Spran-
gle et al., 1994), which are discussed in more detail in the
Sec. VI.B.

Short pulse L <∼ λp diffraction, even in the regime
P >∼ Pc, can be most easily shown as follows. For very
short pulses L < λp, the k2

p term can be neglected on

the left-hand side of Eq. (79). For example, a short pulse
with a constant intensity profile (a2 = a2

0) induces a space
charge potential given by φ ≃ k2

pa
2
0ζ

2/4, and the refrac-
tive index becomes

ηr ≃ 1 − (ω2
p0/2ω

2)(1 − k2
pa

2
0ζ

2/4), (80)

as opposed to Eq. (74). This indicates that the effective
critical power for a short pulse (Sprangle et al., 1990a) is
Pc,sp ≃ 2Pc/(k

2
pζ

2) ≫ Pc, since k2
pζ

2/2 ≪ 1 for a short
pulse. In particular, Pc,sp becomes infinite at the leading
edge of the pulse ζ → 0. Hence, the leading portion
L < λp of a laser pulse will diffractively erode even when
P ≃ Pc.

Simulations (Sprangle et al., 1992), based on a 2D-
axisymmetric quasi-static fluid model, confirm the in-
ability of relativistic guiding to prevent the diffraction of
short laser pulses. The results are shown in Fig. 26 for the
parameters λp = 0.03 cm (n0 = 1.2×1016 cm−3), r0 = λp

(Gaussian radial profile), λ = 1 µm (ZR = 28 cm),
and P = Pc. The initial axial laser profile is given by
|â(ζ)| = a0 sin(−πζ/L) for 0 < −ζ < L = cτL, where
a0 = 0.9 for the above parameters. Simulations are per-
formed for two laser pulse lengths, L = λp (τL = 1 ps)
and L = λp/4 (τL = 0.25 ps). The spot size at the pulse
center versus normalized propagation distance cτ/ZR is
shown in Fig. 26 for (a) the vacuum diffraction case,
(b) the L = λp/4 pulse, and (c) the L = λp pulse.
The L = λp/4 pulse diffracts almost as if in vacuum.
The L = λp pulse experiences a small amount of ini-
tial guiding before diffracting. A preformed parabolic
plasma density channel, however, is effective in guiding
the L = λp pulse, as shown in Fig. 26(d), where the chan-
nel depth is given by ∆n = 1/πrer

2
0 = 1.3 × 1015 cm−3

and the density on-axis is n0 = 1.2 × 1016 cm−3.

Experiments on relativistic self-guiding have been per-
formed for laser pulses propagating in gas-filled cham-
bers, pulsed gas jets, or plasmas generated by exploding
foils (Borghesia et al., 1997; Borisov et al., 1992; Chiron
et al., 1996; Clayton et al., 1998; Krushelnick et al., 1997;
Leemans et al., 2002; Monot et al., 1995; Wagner et al.,
1997; Young et al., 1995). For example, in experiments
using gas jets (Clayton et al., 1998; Krushelnick et al.,
1997; Leemans et al., 2002; Santala et al., 2001a; Wag-
ner et al., 1997), the laser pulse was typically observed
to propagate through the entire width of the jet (∼ few
mm, which corresponds to a few tens of ZR, depending
on the focusing optics used) when P > Pc. Many of these
occurred in the self-modulated LWFA regime, and accel-
erated electrons were also observed (Clayton et al., 1998;
Krushelnick et al., 1997; Leemans et al., 2002; Santala
et al., 2001a; Wagner et al., 1997). In most of these ex-
periments, ponderomotive self-channeling also occurs si-
multaneously with relativistic self-focusing, as discussed
in Sec. V.D.
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C. Preformed plasma density channels

The concept of using a plasma density channel to guide
a laser beam dates back to early studies of laser fu-
sion (Johnson and Chu, 1974; Steinhauer and Ahlstrom,
1971). Density channels in plasmas have been created by
a number of methods. An intense laser pulse propagating
in a plasma can create a channel through a combination
of ponderomotive and thermal effects. The creation of a
density channel through the hydrodynamic expansion of
the radial plasma profile was observed in the early 1970’s
in long-pulse (150 ns) CO2 laser experiments (Johnson
and Chu, 1974). The length of such a channel, how-
ever, is limited to the propagation distance of the laser
pulse which creates the channel, and the utility of us-
ing such a channel to guide a laser pulse many Rayleigh
lengths is limited. High power, short laser pulses can
be guided in plasma channels created by a variety of
methods, including laser-induced hydrodynamic expan-
sion (Durfee III and Milchberg, 1993; Gaul et al., 2000;
Geddes et al., 2004, 2005a; Milchberg et al., 1996; Volf-
beyn et al., 1999) and capillary discharges (Butler et al.,
2002; Ehrlich et al., 1998; Hooker et al., 2000; Hosokai
et al., 2000; Luther et al., 2004; Zigler et al., 1996).

To understand the basic principles of channel guiding,
consider a parabolic density channel of the form n =
n0 + ∆nr2/r20, where ∆n = n(r0) − n(0) is the channel
depth. For a low power P ≪ Pc, low intensity a2 ≪ 1
laser pulse, the index of refraction is given approximately
by

ηr = 1 −
ω2

p0

2ω2

(

1 +
∆n

n0

r2

r20

)

. (81)

Analysis of the paraxial wave equation with an index of
refraction of this form indicates that the spot size rs of a
Gaussian laser beam with a2 = (a0r0/rs)

2 exp(−2r2/r2s)
evolves according to (Esarey et al., 1994)

d2R

dz2
=

1

Z2
RR

3

(

1 − ∆n

∆nc
R4

)

. (82)

The first term on the right-hand side represents the ef-
fects of vacuum diffraction and the second term repre-
sents the focusing effects of the channel. Equation (82)
indicates that a Gaussian beam will be guided at the
matched beam spot size rs = r0 provided that the chan-
nel depth ∆n is equal to the critical channel depth given
by (Sprangle and Esarey, 1992; Sprangle et al., 1992)

∆nc = (πrer
2
0)

−1, (83)

or ∆nc(cm
−3) = 1.13 × 1020/r20(µm), where re =

e2/(mec
2) is the classical electron radius.

The general solution to Eq. (82) for the initial (z = 0)
conditions drs/dz = 0 and rs = ri is (Esarey et al., 1994)

2
r2s
r2i

= 1 +
∆ncr

4
0

∆nr4i
+

(

1 − ∆ncr
4
0

∆nr4i

)

cos (kosz) , (84)

where kos = (2/ZR)(∆n/∆nc)
1/2 and ri is the injected

spot size. A matched beam requires ∆nr4i = ∆ncr
4
0 ,

e.g., ri = r0 and ∆n = ∆nc. If the beam is not
matched within the channel, the spot size oscillates be-
tween r2s = r2i and r2s = ∆ncr

4
0/∆nr

2
i with an aver-

age value
〈

r2s
〉

= (r2i /2)(1 + ∆ncr
4
0/∆nr

4
i ). The os-

cillation period within the channel is λos = 2π/kos =
πZR(∆nc/∆n)1/2. The laser beam will remain confined
within the channel provided that the maximum radius of
the channel rch is sufficiently large, i.e., rch > rs.

To illustrate the effectiveness of optical guiding using
preformed density channels, the results of two simula-
tions are presented, both based on the 2D-axisymmetric
fluid model discussed in Sec. V. The first simulation
(Esarey et al., 1993a) is of a channel-guided LWFA with
an ultrashort (L ≃ λp), high-intensity (a0 ∼ 1) laser
pulse, the results of which are shown in Figs. 27, 28,
and 29. In this example, the initial axial laser profile is
given by |â(ζ)| = a0 sin(−πζ/L) for 0 < −ζ < L, with
a0 = 0.72 and L = 120 µm (400 fs). Also, λ = 1 µm
and r0 = 60 µm (Gaussian radial profile), which implies
ZR = 1.1 cm and P = 40 TW. The density on-axis is
chosen such that L = λp (n0 = 7.8 × 1016 cm−3) and
a parabolic profile is assumed with ∆n = (πrer

2
0)

−1 =
3.2 × 1016 cm−3.

Figure 27(a) shows the evolution of the laser spot size
versus normalized propagation distance cτ/ZR. The laser
pulse remains guided by the density channel, the laser
spot size exhibiting small oscillations about its initial
value over the full 20ZR = 23 cm simulation length. After
cτ = 20ZR, the pulse profile shows very little distortion
from its initial profile. A surface plot of the electron den-
sity profile at cτ = 20ZR is shown in Fig. 28. The initial,
unperturbed parabolic profile can be seen at ζ = 0, and
the distortion of the channel by the laser pulse, includ-
ing the excitation of a large amplitude wakefield along the
axis, is evident in the region ζ < 0. In this example nearly
all the electrons have been expelled from the vicinity of
the laser pulse. The radial variation in the channel den-
sity causes a radial variation in the plasma wavelength
and curvature of the plasma wavefronts. A slight axial
damping of the plasma wave also occurs, as evident in
Fig. 29, where the axial electric field Ez is plotted versus
ζ along the axis at cτ = 20ZR. The effects of the wake-
fields on a continuous 2 MeV electron beam with an ini-
tial normalized transverse emittance εn = 1.0 mm-mrad
and RMS radius rb = 10 µm was also simulated. After
cτ = 20 cm, approximately 70% of the beam electrons
were trapped and accelerated. The peak electron energy
increases nearly linearly with propagation distance with
an average acceleration gradient of 5.25 GeV/m (1 GeV
in 20 cm).

The second simulation is an example of mismatched
laser propagation in a channel, which extends from
0.5 cm < z < 1.5 cm with n0 = 5 × 1018 cm−3,
∆np(rch) = 4n0/5, and rch = 150 µm (parameters near
those of the experiment in (Ehrlich et al., 1996)). Here, a
λ = 0.8 µm, 100 fs, 30 GW (3 mJ), 1.6 times-diffraction-
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limited laser pulse is focused on the channel entrance with
spot size rs = 15 µm. Owing to the low laser power, the
pulse does not become self-modulated. Figure 30 shows
that the laser spot size oscillates about its matched value
of r0 = 28 µm, emerging from the 1 cm long channel with
a radius of 45 µm and a divergence angle of 14 mrad, in
approximate agreement with the experiment of (Ehrlich
et al., 1996).

The above discussion concerned parabolic channel pro-
files. Other channel profiles, however, may offer different
advantages. Durfee III et al. (1995) discuss the forma-
tion of “leaky” channels, in which the channel is approxi-
mately parabolic out to some radius, after which the den-
sity falls off to zero. Such a profile occurs naturally in the
creation of plasma channels by hydrodynamic expansion
of a hot plasma core in a gas. Higher order transverse
modes may not be guided by such a channel, and Anton-
sen, Jr. and Mora (1995) have described how leaky chan-
nels can stabilize certain instabilities, such as small an-
gle forward Raman scattering (Antonsen, Jr. and Mora,
1993; Mori et al., 1994), self-modulation (Andreev et al.,
1992; Esarey et al., 1994; Sprangle et al., 1992), and laser-
hosing (Shvets and Wurtele, 1994; Sprangle et al., 1994).
Hollow channels (e.g., a square channel with density zero
on-axis out to the channel radius) may have beneficial
properties with regard to particle acceleration (Chiou
et al., 1995; Schroeder et al., 1999b). Within the hollow
channel, where the plasma density is essentially zero, the
transverse profile of the axial wakefield is uniform, thus
providing uniform acceleration of an injected beam. The
wakefield in such a channel, however, may be damped
through resonant absorption in the channel walls (Shvets
et al., 1996).

The ability to guide intense laser pulses over many
ZR is an essential element of a high energy LWFA.
Plasma channel guiding of short laser pulses was first
demonstrated in hydrodynamically formed plasma chan-
nels produced by focusing a relatively intense laser beam
with an axicon lens (Durfee III and Milchberg, 1993;
Milchberg et al., 1996). In these pioneering experiments,
high Z-gases were used to facilitate the ionization process.
High Z-gases, however, are susceptible to further ion-
ization when used with ultra-high intensity lasers, and,
therefore, a method was needed to allow the use of low
Z-gases. By separating out the ionization and heating
phase of the channel formation, channels were produced
in hydrogen gas with the ignitor-heater method (Volf-
beyn et al., 1999).

Another laser-induced channel guiding technique uti-
lizes a pump-probe method (Krushelnick et al., 1997;
Wagner et al., 1997). In these experiments, an intense
pump pulse with P > Pc was guided through a gas jet
through a combination of relativistic self-focusing and
ponderomotive self-channeling. The ponderomotive force
of the pump pulse created a plasma channel after its pas-
sage. This channel was then used to guided a low power
probe pulse propagating along the axis.

In addition to laser-induced channels, guiding has also

been demonstrated in plasma channels produced by cap-
illary discharges (Butler et al., 2002; Ehrlich et al., 1998;
Hooker et al., 2000; Hosokai et al., 2000; Luther et al.,
2004; Zigler et al., 1996). One present advantage of cap-
illary discharges over that of laser-induced plasma chan-
nels is length. Laser-induced channels have typically
been limited to a few mm, whereas capillary discharges
can be on the order a few cm. Possible disadvantages
of capillary discharges include a limited lifetime and the
introduction of higher Z impurities due to wall ablation.

Other channel techniques have also been considered,
such as evacuated and gas-filled capillaries (Dorchies
et al., 1999), laser-ablated capillaries (Kitagawa et al.,
2004), discharge-initiated laser-induced channels (Gaul
et al., 2000), as well as laser-induced channels using a
cluster jet (Kumarappan et al., 2005), which has the
possible advantage of producing lower density channels.
Prior to 2004, however, all demonstrations of guiding in
preformed plasma density channels were limited to the
mildly relativistic regime, i.e., a2

0 ≪ 1.

Channeling at relativistic intensities (Geddes et al.,
2004, 2005a) was realized with preformed guiding chan-
nels created using a variation of the ignitor-heater
method. In these experiments, a plasma was formed in a
2.5 mm long supersonic H2 gas jet with an atomic den-
sity of 3–4×1019 cm−3 by an ignitor pulse (15 mJ, 60 fs)
that is co-axial with the drive pulse, then heated by a
heater pulse (150 mJ, 250 ps). Figure 31 shows the ba-
sic experimental setup. Hydrodynamic expansion of the
plasma formed a channel that guided a relativistically
intense drive pulse that was focused at the entrance to
the channel. The drive pulse (500 mJ, 55 fs) was focused
with an off-axis parabola to a spot of 7–8.5 µm FWHM
resulting in a laser intensity of 1.1 × 1019 W/cm2).

The ignitor-heater method provides the ability to tai-
lor the channel properties. By varying the time delay
between the heater and drive pulses, energy of the heater
pulse, and spatial overlap, channels can be created with
different radial density profiles. Figure 32 shows an ex-
ample of mode images of laser spots at 4 TW (7 µm input
spot, 7×1018 W/cm2). With the channel on, the output
spot (b) matches the input (a). The mode imager resolu-
tion is restricted by f# constraints in the target chamber,
and measures a 12 µm FWHM spot size for both input
and output. Hence, the guided intensity is between 1018

and 2.5 × 1018 W/cm2, with the lower limit set by the
12 µm mode imager observation and the upper limit set
by the input spot size. In the absence of any plasma,
a large mode size consistent with vacuum diffraction is
observed (c), and with the gas jet on but the channel
off (d) diffraction is increased by ionization effects (Lee-
mans et al., 1992; Rankin et al., 1991), showing that self
guiding alone is insufficient to efficiently guide the laser
pulse.
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D. Ponderomotive self-channeling

The radial ponderomotive force of a long laser pulse
(L > λp) propagating in an initially uniform plasma can
expel electrons from the axis thus creating a density chan-
nel (i.e., self-channeling or electron cavitation) (Esarey
et al., 1993a; Kurki-Suonio et al., 1989b; Sprangle and
Esarey, 1992; Sprangle et al., 1992; Sun et al., 1987). This
can enhance the effects of relativistic self-focusing. Con-
sider a long (L ≫ λp) axially uniform laser pulse propa-
gating in an initially uniform plasma. The steady-state
radial force balance indicates that the space charge force
is equal to the ponderomotive force, i.e., ∇⊥φ = ∇⊥γ⊥,
where γ⊥ = (1+a2)1/2 (with circular polarization). This
implies a density perturbation via the Poisson equation
∇2

⊥
φ = k2

pδn/n0 given by (Kurki-Suonio et al., 1989b;
Sprangle et al., 1992; Sun et al., 1987)

δn/n0 = k−2
p ∇2

⊥
(1 + a2)1/2, (85)

assuming |δn/n0| ≤ 1. The corresponding index of re-
fraction is given by

ηr ≃ 1 −
ω2

p0

2ω2

[

1 + k−2
p ∇2

⊥
(1 + a2)1/2

(1 + a2)1/2

]

. (86)

This can also be derived from 2D nonlinear plasma theory
via Eq. (70). In the long pulse limit L≫ λp, |∂Ψ/∂ζ| ≪
|kpΨ| and (1 + Ψ) ≃ (1 + a2)1/2, which yields Eq. (86).
Neglected in Eq. (86) is the generation of plasma waves,
which can lead to the self-modulation of long pulses.

In the limit a2 ≪ 1, a Gaussian laser profile
a2 = a2

0 exp(−2r2/r20) creates a density profile δn =
−δn(0)(1 − 2r2/r20) exp(−2r2/r20). Along the axis, the
depth of the ponderomotive channel is given by δn(0) =
a2
0∆nc, where ∆nc is given by Eq. (83). Analysis of the

paraxial wave equation with a density perturbation given
by δn/n0 = k−2

p ∇2
⊥
a2/2 indicates that the normalized

spot size of a Gaussian laser pulse evolves according to
(Sprangle et al., 1991)

d2R

dz2
=

1

Z2
RR

3

(

1 − P

Pc
− δn(0)

2∆nc
R−2

)

. (87)

where δn(0) = a2
0∆nc and a2 ≪ 1 is assumed. Hence,

in the limit P/Pc ≪ 1, the ponderomotive channel depth
required to guide a laser pulse is δn(0) ≥ 2∆nc. Clearly,
when a0 < 1, the ponderomotive self-channel alone will
not guide the laser pulse. Furthermore, |δn/n0| < 1
implies a2

0 < 2(P/Pc)
1/2 and δn(0) < 2(P/Pc)

1/2∆nc.
Hence, P/Pc ≤ 1 implies δn(0) < 2∆nc, which again
indicates that the ponderomotive channel alone will not
guide the laser pulse. For laser powers approaching the
critical power P → Pc, guiding is achieved predomi-
nantly by relativistic self-focusing. Ponderomotive self-
channeling can enhance this effect, but does not dramat-
ically alter the power threshold for guiding. More de-
tailed studies (Sun et al., 1987), which include the ef-
fects of relativistic self-focusing and ponderomotive self-
channeling, conclude that the threshold power for guiding
is P (GW) ≥ 16.2(ω2/ω2

p0).

E. Plasma wave guiding

An ultrashort (L < λp) laser pulse can be guided by
a plasma wave, provided that the laser pulse is prop-
erly phased within the wakefield and the wakefield ampli-
tude is sufficiently large (Esarey and Ting, 1990; Spran-
gle et al., 1990a; Ting et al., 1990). The effective index
of refraction for a low power (P/Pc ≪ 1), low intensity
(a2 ≪ 1) laser pulse propagating in a plasma wave is
given by

ηr ≃ 1 − (ω2
p0/2ω

2)(1 + δn/n0), (88)

where δn is the density oscillation of the plasma wave,
which is assumed to be unaffected by the low inten-
sity laser pulse. Consider a plasma wave of the form
δn = δn̂(r) sin(kpζ), where δn̂ > 0 and dδn̂/dr < 0. In
regions where sin(kpζ) < 0, the plasma wave acts as a lo-
cal density channel and enhances focusing, and in regions
where sin(kpζ) > 0, the plasma wave enhances diffrac-
tion. Notice that a test laser pulse experiences maximum
focusing at the minimum of δn (i.e., ζ = −π/2). As dis-
cussed in Sec. II.G, it can be shown that a short laser
pulse can be frequency upshifted by a plasma wave wake-
field provided that it resides in the phase region where
∂δn/∂ζ < 0. In particular, maximum frequency upshift-
ing occurs at the maximum of −∂δn/∂ζ (i.e., ζ = −π for
the above example). In general, for a sinusoidal plasma
wave, a test laser pulse will experience both enhanced
focusing and frequency upshifting over a |kp∆ζ| = π/4
phase region of the plasma wave. Furthermore, Eq. (88)
describes how a plasma wave can lead to the modulation
of a long (L > λp) laser pulse (Esarey and Ting, 1990),
as illustrated schematically in Fig. 33.

In addition to a plasma wave acting as a local density
channel and providing periodic regions of enhanced fo-
cusing and diffraction as described above, a plasma wave
can enhance the self-focusing of long (L ≫ λp) laser
pulses by several other methods. For example, the elec-
tric field profile Epw of the plasma wave can provide an
additional radial ponderomotive force via ∇E2

pw (Joshi
et al., 1982). In addition, the oscillatory motion of the
plasma electrons in the plasma wave can contribute to
the relativistic Lorentz factor (Mori et al., 1988). Fur-
thermore, the plasma wave can lead to the generation
of higher-order Stokes and anti-Stokes light waves (i.e.,
energy cascading) which can affect self-focusing (Gibbon
and Bell, 1988). These effects have been observed in ex-
periments (Joshi et al., 1982) and simulations (Gibbon
and Bell, 1988; Mori et al., 1988) of two-frequency laser-
plasma interactions, in which the plasma wave is reso-
nantly driven by the laser beat wave.

VI. LASER-PLASMA INSTABILITIES

Laser plasma instabilities can limit the laser propaga-
tion distance and degrade the performance of a laser-
driven accelerator. This section will provide a brief
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overview of a few instabilities that are relevant to short-
pulse laser-driven accelerators: stimulated forward and
backward Raman scattering (Esarey and Sprangle, 1992;
Kruer, 1988; McKinstrie and Bingham, 1992; Sakharov
and Kirsanov, 1994), self-modulation (Andreev et al.,
1992; Antonsen, Jr. and Mora, 1992, 1993; Esarey et al.,
1994; Sprangle et al., 1992), and laser-hose instabilities
(Shvets and Wurtele, 1994; Sprangle et al., 1994). In
particular, this section will consider instabilities relevant
to laser pulses short compared to the ion response time.
Other instabilities present in long-pulse laser-plasma in-
teractions, such as parametric coupling to ion modes,
which have been observed in PBWA experiments (Ami-
ranoff et al., 1992), will not be discussed.

A. Stimulated Raman Scattering

Stimulated Raman scattering involves the interaction
of a light wave with an electron plasma wave (Kruer,
1988). In its most basic form, it consists of the decay
of the pump laser field, of frequency and wavenumber
(ω0,k0), into an electron plasma wave (ω,k) and two
daughter light waves, namely, a Stokes wave (ω0−ω,k0−
k) and an anti-Stokes wave (ω0 + ω,k0 + k). Typically,
ω ≃ ωp + iΓ where the growth rate Γ is obtained through
a standard linear instability analysis. In such an anal-
ysis, the pump laser field is assumed to be a 1D plane
wave of the form a ∼ a0 exp(ik0 · r − iω0t). Perturba-
tions are introduced δa ∼ exp[i(k0 ± k) · r − i(ω0 ± ω)t]
and the linearized equations are then solved to determine
the behavior of the instability. Since the pump laser is
assumed to be a 1D plane wave, the 3D evolution of the
pump laser is not taken into consideration. In particular,
the effects of diffraction and self-focusing are neglected.
Strictly speaking, the resulting analysis is only valid for
times short compared to the characteristic evolution time
τE of the pump laser, e.g., t < τE ∼ ZR/c. In practice,
however, the growth rates obtained from such an anal-
ysis can be adequate estimates provided that the mode
frequency and growth rate are large compared to τ−1

E .

For an infinite, 1D plane wave pump field, the purely
temporal Raman growth rates, i.e., δa ∼ exp(Γt) with
growth rate Γ independent of t, can be obtained in a
straightforward manner. The basic treatment of for-
ward and backward Raman scattering is presented in the
monograph by Kruer (1988). Temporal growth rates for
the various Raman modes in various regimes has been
summarized by Antonsen, Jr. and Mora (1993). For
short laser pulses, however, the growth and propagation
of the instability with respect to the laser pulse front
must be correctly taken into consideration. Antonsen,
Jr. and Mora (1992, 1993) first applied convective insta-
bility analysis, or a spatiotemporal analysis, to Raman
instabilities in order to account for the short-pulse char-
acter of the instability.

1. Backward Raman scattering

In Raman backscattering (RBS), the pump wave
(ω0, k0) decays into a plasma wave (ω, k) and a back-
ward going scattered wave (ω0−ω, k0−k), where ω ≃ ωp

and k ≃ 2k0. The standard temporal growth rate (Kruer,
1988), in the limits a2

0 ≪ 1 and ωp ≪ ω0, i.e., the weakly-

coupled regime, is Γ = (a0/2)(ωpω0)
1/2. In general, the

scattered mode can propagate at some angle θ with re-
spect to the pump wave, i.e., sidescatter, and the growth
rate is given by sin(θ/2) times the RBS result. The spa-
tiotemporal analysis indicates that the number of e-folds
Ne of the instability, δa ∼ exp(Ne), is given by (Anton-
sen, Jr. and Mora, 1993)

Ne ≃ (a2
0kpk0/8)1/2|ζ|. (89)

In effect, since the scattered wave is moving opposite to
the pump, the temporal growth is modified by ct→ |ζ|/2,
where ζ = z − ct is a measure of the distance back from
the front of the laser pulse.

Typically, RBS is the fastest growing of the Raman
scattering instabilities. In laser-plasma accelerators,
RBS is significant for a number of reasons. At low
pump laser intensities, the spectrum of the backscat-
tered radiation can be used to determine ω − ωp, and
hence the plasma density can be determined experimen-
tally. For high pump intensities, however, it has been ob-
served that the backscattered spectrum broadens (Dar-
row et al., 1992; Krushelnick et al., 1998) and, in some
cases, becomes extremely broad, such that the ω − ωp

peak can no longer be distinguished. Raman sidescat-
ter and backscatter can erode the back of a long pulse,
L > λp, since energy is being transported out of the
pulse. This erosion has been observed in fluid (Andreev
et al., 1995; Antonsen, Jr. and Mora, 1993) and particle
simulations (Bulanov et al., 1995; Decker et al., 1996b).

As the RBS mode grows to large amplitude, it can
trap the background plasma electrons, thus heating the
plasma and creating a fast tail on the electron distri-
bution. The phase velocity of the RBS plasma wave is
vp = ω/k = ωp/2k0 ≪ c. Since vp/c ≪ 1, the plasma
wave can trap the background thermal electrons. The
resulting fast electrons can be subsequently trapped by
Raman scattered modes propagating at smaller angles
θ, which will accelerate the electrons to higher ener-
gies (Bertrand et al., 1995; Esarey et al., 1998; Joshi
et al., 1981). Eventually, these background electrons
can be trapped and accelerated to very high energies
by the plasma wave associated with the forward Ra-
man instability or the self-modulation instability, which
has vp ≃ c. This mechanism may explain how back-
ground plasma electrons can be trapped and accelerated
to high energies, as is observed in experiments (Coverdale
et al., 1995; Gahn et al., 1999; Gordon et al., 1998; Lee-
mans et al., 2001; Malka et al., 2001; Nakajima et al.,
1995; Ting et al., 1997; Wagner et al., 1997) and sim-
ulations (Bulanov et al., 1995; Decker et al., 1996b) in
the self-modulated or forward Raman scattering regimes.
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For sufficiently large relativistic plasma wave amplitudes,
self-trapping of background plasma electrons can also re-
sult in electron bunch generation and acceleration (Mod-
ena et al., 1995).

For high pump intensities, theory predicts that stim-
ulated backscattering occurs in the strongly coupled or
Compton regime (Antonsen, Jr. and Mora, 1993; Ev-
erett et al., 1995b; Leemans et al., 1991; Schroeder et al.,
2003b; Shvets et al., 1997), for which ω ∼ Γ ≫ ωp and the

number of e-folds is Ne = (
√

3/2)(ω2
pω0a

2
0/4)1/3|ζ|/γ⊥.

In addition, 1D nonlinear theory predicts that for a lin-
early polarized pump laser field, stimulated backscat-
tered harmonic radiation can be generated (Esarey and
Sprangle, 1992) at frequencies given approximately by
(2ℓ + 1)ω0 (ℓ = integer), i.e., odd harmonics. Although
the growth rate for the higher harmonics can be signifi-
cant when a2

0 ≫ 1, thermal effects, i.e., trapping of the
background plasma electrons, can severely limit the gen-
eration of higher harmonics (Esarey and Sprangle, 1992).

2. Forward Raman scattering

In Raman forward scattering (RFS) (Kruer, 1988), the
scattered waves propagate parallel (or nearly parallel) to
the pump wave, and the associated plasma wave has a
phase velocity vp ≃ c. Hence, the plasma wave can be
used to accelerate electrons to high energies. The RFS
instability can serve as the basis for a LWFA (Esarey
et al., 1996; Joshi et al., 1981; Mori et al., 1994; Tajima
and Dawson, 1979), in which a single long (L > λp) laser
pulse becomes modulated via RFS and drives a large am-
plitude plasma wave. A LWFA based on RFS can be
viewed as the 1D analogue to the self-modulated LWFA.

The physical mechanism of RFS can be understood
by the following 1D description (Mori, 1997). Consider a
long uniform laser pulse propagating in the presence of an
initially small amplitude plasma wave of the form δn =
δn0 sin kpζ with δn0 > 0. Since the local group velocity
vg is given by vg/c ≃ 1 − ω2

p(ζ)/2ω2
0 , the local group

velocity decreases in regions where δn > 0 and increases
in regions where δn < 0. This tends to modulate the laser
pulse such that the intensity modulations are π/2 out of
phase with the density wave, i.e., a ≃ a0 + δa, where
δa = δa0 cos kpζ and δa0 > 0. This intensity modulation
feeds back via (∂2/∂ζ2 + k2

p)δn/n0 = (∂2/∂ζ2)a2/2 and
drives the plasma wave to larger amplitudes, resulting in
the RFS instability.

Several regimes of the RFS can be identified (Anton-
sen, Jr. and Mora, 1993; Decker et al., 1996a; McKinstrie
and Bingham, 1992; Schroeder et al., 2003b), such as a
4-wave regime, in which both ω0±ωp modes are resonant,
and a 3-wave regime, in which only ω0 − ωp is resonant
with the pump laser and the plasma wave. The tempo-
ral growth rate in the 4-wave resonant regime is Γ4 =
ω2

pa0/2
√

2ω0, the temporal growth rate in the 4-wave

nonresonant regime is Γ4nr =
√

3ωp(a0ω
2
p/4ω

2
0)

2/3/2,
and the temporal growth rate in the 3-wave regime is

Γ3 = ωpa0(ωp/ω0)
1/2/4. The spatiotemporal analysis

(Antonsen, Jr. and Mora, 1993; Decker et al., 1996a;
Schroeder et al., 2003b) indicates, however, that as the
RFS instability grows, it passes through these various
regimes, depending on the relative value of |ζ|/cτ , where
ζ = z−ct and τ = t are the independent coordinates. The
number of e-foldings for these three RFS modes and the
corresponding spatiotemporal regimes are roughly given
by (Antonsen, Jr. and Mora, 1993; Decker et al., 1996a;
Schroeder et al., 2003b)

Ne ≃ 2Γ4(|ζ|τ/c)1/2 , for a2
0

|ζ|
cτ

≫ 2
ω2

p

ω2
0

, (90)

Ne ≃ 3

2
Γ4nr(2|ζ|τ2/c)1/3 , for 8

ω5
p

ω5
0

≪ a2
0

2

|ζ|
cτ

≪
ω2

p

ω2
0

,

(91)

Ne ≃ 2Γ3(|ζ|τ/c)1/2, for a2
0

|ζ|
cτ

≪ 16
ω5

p

ω5
0

, (92)

where a2
0 ≪ 1 and ω2

p/ω
2
0 ≪ 1 are assumed. Decker et al.

(1996a) describe that for a fixed ζ within the pulse, the
RFS instability transitions through the various regimes
as a function of time. A similar analysis has been applied
by Antonsen, Jr. and Mora (1993) to describe small angle
RFS, the resulting growth rate is proportional to Γ3, sim-
ilar to Eq. (92). As a side note, the paraxial approxima-
tion to the wave operator (∇2

⊥
+ 2ik0∂/∂cτ) is not suffi-

cient to describe direct (θ = 0) RFS; retention of the term
2∂2/∂ζ∂cτ is necessary to describe on-axis RFS. This was
done in the fluid simulation of the self-modulated LWFA
presented in Sec. III.D, i.e., the effects of both the RFS
and self-modulation instabilities are included. A non-
paraxial theory (Esarey et al., 2000), describing the non-
linear coupling of RFS and self-modulation instabilities,
has found that the self-modulation instability often dom-
inates in regimes of interest to the self-modulated LWFA.

In addition, it is also possible for a RFS mode to un-
dergo multiple scattering, sometimes referred to as cas-
cading (Gibbon and Bell, 1988; Joshi et al., 1981), re-
sulting in multiple waves with frequencies ω0 ± ℓωp (ℓ =
integer). It is possible to interpret this as photon accel-
eration, or phase-modulation by the plasma wave, of the
scattered light wave (Mori et al., 1994). Numerous high-
order Stokes and anti-Stokes lines have been observed
in simulations of RFS (Decker et al., 1994). Multiple
(Coverdale et al., 1995; Moore et al., 1997; Wagner et al.,
1997) (up to the fifth (Modena et al., 1995)) anti-Stokes
lines have been observed in RFS or self-modulated LWFA
experiments.

B. Self-modulation and laser-hose instabilities

A formalism has been developed (Esarey et al., 1994,
2000; Sprangle et al., 1994) to describe the 3D evolu-
tion of laser pulses in plasmas, including the effects of
diffraction, relativistic and channel guiding, finite pulse
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duration, and coupling to the self-consistent plasma wave
generated by the pulse structure. This formalism has
been used to describe a class of “whole-beam” instabili-
ties, which includes self-modulation (Esarey et al., 1994;
Sprangle et al., 1994) and laser-hose (Sprangle et al.,
1994) instabilities. In this formalism, equations are de-
rived to describe the evolution of the local laser pulse spot
size xs(ζ, t) and the local laser pulse centroid xc(ζ, t),
where the transverse profile of the laser field is assumed to
be a Gaussian of the form a ∼ exp

[

−(x− xc)
2/x2

s

]

(the y
profile can be similarly defined). The self-modulation in-
stability consists of a periodic “sausaging” of the laser
spot size xs and the laser-hose consists of a periodic
“kinking” of the laser centroid xc, as show schemati-
cally in Fig. 34. In their most basic forms, the self-
modulation and laser-hose instabilities are described by
spot size and centroid perturbations of the forms δxs,c ∼
exp(Γs,ct+ikpζ), i.e., having a period equal to the plasma
wavelength λp = 2π/kp and a spatiotemporal growth rate
Γs,c = Γs,c(ζ, t). Intrinsically, these instabilities involve
a coupling to a plasma wave, and the dynamics of the
instabilities are determined by the enhanced diffraction
and focusing of the laser pulse owing to the presence of
the plasma wave.

The physical mechanism underlying self-modulation
has been described previously in Sec. III.D. The physical
mechanism for laser hosing (Shvets and Wurtele, 1994;
Sprangle et al., 1994) is somewhat similar. Consider a
long, L > λp, guided laser pulse P/Pc = 1 − ∆n/∆nc,
with a centroid which is initially perturbed at the plasma

wavelength xc ≃ xc0 sin(kpζ). This periodic centroid dis-
placement will drive an asymmetric plasma wave. Notice
that for x2

c/x
2
s ≪ 1, the intensity profile is approximately

a2 ≃ a2
0(1 + 4xxc/x

2
s) exp(−2x2/x2

s). At a fixed x posi-
tion above the axis, x = x0, the laser intensity modula-
tion has the form a2(x0)/a

2
0 ∼ 1 + 4(x0xc0/x

2
s) sin(kpζ),

which drives a plasma wave. At a fixed x position below
the axis, x = −x0, the laser intensity is similarly mod-
ulated, but π out of phase with respect to the x = x0

modulation. Hence, the plasma wave driven below the
axis is π out of phase with respect to the plasma wave
driven above the axis, i.e., an asymmetric (with respect
to x) plasma wave. Roughly speaking, the plasma wave
has the form δn ∼ −(x/xs) cos(kpζ). The laser pulse will
tend to focus into the regions of reduced plasma density.
For the asymmetric plasma wave, the laser pulse evolves
in such a way as to enhance the initial centroid pertur-
bation and the process proceeds in an unstable manner.

Equations describing the behavior of the spot size
xs(ζ, τ) and centroid xc(ζ, τ) can be derived by analyzing
the paraxial wave equation including the effects of a per-
formed parabolic density channel and the self-consistent
plasma response given by

δn

n0
=

∫ ζ

0

dζ′ cos[kp(ζ − ζ′)]
∂

∂ζ′
a2(ζ′)

2
. (93)

In the limits a2 ≪ 1 and k2
pr

2
0 ≫ 1, xs and xc obey

equations of the form (Sprangle et al., 1994)

(

∂2

∂τ̂2
+

∆n

∆nc

)

x̂c = −4kp

∫ ζ

0

dζ′ sin[kp(ζ
′ − ζ)] [xc(ζ

′) − xc(ζ)]Fc(ζ
′, ζ)

P (ζ′)

Pc
, (94)

and

∂2x̂s

∂τ̂2
−
(

1 − x̂sP

ŷsPc
− ∆n

∆nc
x̂4

s

)

x̂−3
s = 4x̂s

∫ ζ

0

dζ′ cos[kp(ζ
′ − ζ)]

∂

∂ζ′

[

Fs(ζ
′, ζ)

P (ζ′)

Pc

]

. (95)

Also, ŷc and ŷs obey equations similar to Eqs. (94) and
(95), respectively. In the above, x̂c = xc/r0, ŷc = yc/r0,
x̂s = xs/r0, ŷs = ys/r0, τ̂ = cτ/ZR, ZR = kr20/2 is the
Rayleigh length, ∆nc = (πrer

2
0)

−1 is the critical chan-
nel depth, P (ζ)/Pc = a2xsysk

2
p/16 is the laser power

normalized to the critical power, and Fs,c(ζ
′, ζ) are func-

tions which depend on xs, ys, xc, and yc and couple the
spot size dynamics to the centroid dynamics (Sprangle
et al., 1994).

The right-hand side of Eq. (94) indicates that if
xc(ζ) = xc(ζ

′) initially (i.e., a uniform centroid), xc(ζ)
will not increase. Hence, the laser-hose instability re-
quires a non-uniform head-to-tail centroid displacement
(Sprangle et al., 1994) ∂xc/∂ζ 6= 0. The right-hand side
of Eq. (95) indicates that axial gradients in the laser

power ∂P/∂ζ 6= 0 will lead to modulations in the laser
envelopes (xs, ys), which can grow in an unstable man-
ner as discussed in Sec. III.D. Both the self-modulation
and laser-hose instabilities can occur in either a uniform
plasma (∆n = 0) or in a preformed density channel.

In the absence of a centroid perturbation, i.e., xc = 0
(no hosing), self-modulation is described by Eq. (95).
For an axisymmetric pulse (xs = ys = rs), Fs,c =
[R2(ζ) +R2(ζ′)]−2 with R = rs/r0 (Esarey et al., 1994).
The second, third, and fourth terms on the left-hand side
of Eq. (95) represent the effects of vacuum diffraction,
relativistic focusing, and channel focusing, respectively,
whereas the term on the right-hand side represents the
nonlinear coupling of the laser envelope to the plasma
wave. Equation (95) describes well-known laser pulse
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evolution, such as the inability of relativistic guiding to
prevent the diffraction of short pulses L < λp (Sprangle
et al., 1992, 1990a,b; Ting et al., 1990).

The evolution of a long, axially uniform laser beam can
be examined in the limit where the effect of the plasma
wave is neglected, i.e., the nonlinear coupling term on the
right-hand side of Eq. (95) is set equal to zero. Neglecting
the coupling term, the solution to Eq. (95) for the initial
(z = 0) conditions drs/dz = 0 and rs = ri is (Esarey
et al., 1994)

r2s
r2i

=
∆ncr

4
0

2∆nr4i

[

1 − P

Pc
+

∆nr4i
∆ncr40

−
(

1 − P

Pc
− ∆nr4i

∆ncr40

)

cos (kosz)

]

, (96)

where kos = (2/ZR)(∆n/∆nc)
1/2 and ri is the injected

spot size. For P ≤ Pc, the spot size oscillates between
r2s = r2i and r2s = (1 − P/Pc)∆ncr

4
0/(∆nr

2
i ) with an os-

cillation period λos = 2π/kos = πZR(∆nc/∆n)1/2. A
matched beam with rs = ri = r0 requires P = PM ,
where (Esarey et al., 1994)

PM = Pc(1 − ∆n/∆nc), (97)

i.e., the effective critical power PM for guiding is reduced
by a finite density channel (assuming ∆n ≤ ∆nc). Notice
that for ri = r0 and (kosz)

2 ≪ 1, Eq. (96) reduces to
r2s/r

2
0 = 1+(1−P/Pc−∆n/∆nc)(z/ZR)2. This indicates

that beam will initially focus for P > PM or diffract for
P < PM with an effective Rayleigh length of ZR(1 −
P/Pc − ∆n/∆nc)

−1/2.
The effect of the plasma wave on the spot size evo-

lution is described by the right-hand side of Eq. (95).
The initial effect of the plasma wave can be estimated
by approximating R(ζ′) = R(ζ) within the integral in
Eq. (95), i.e., initially the spot size is uniform through-
out the pulse. In this limit the right-hand side of Eq. (95)
can be written as (−δn/∆nc)/(2R

3), where δn is the ini-
tial density perturbation given by Eq. (93). The rise
associated with the front of the pulse gives a nonzero
value of ∂a2/∂ζ that generates a finite amplitude den-
sity wake. Throughout the body of a long, flat-top
pulse, this density wake has the form δn = δn̂ cos(kpζ).
In particular, for a flat-top pulse with a fast rise,
k2

pL
2
rise ≪ 1, Eq. (93) yields δn/n0 = −(a2

0/2) cos(kpζ)
and the right-hand side of Eq. (95) can be written as
(−δn/2∆nc)R

−3 = R−3(P/Pc) cos(kpζ). Hence, at the
phase regions where cos(kpζ) = −1, focusing requires
P ≥ PM/2 (for k2

pL
2
rise ≫ 1, the initial wake δn van-

ishes and focusing requires P ≥ PM ). Clearly, the effect
of the initial density wake δn(ζ) is to produce ζ-periodic
regions of enhanced focusing and diffraction. This causes
the laser intensity to become modulated at λp, which sub-
sequently enhances the density wake at later times. This
is the basis of the self-modulation instability.

For sufficiently small perturbations, xs/r0 ≪ 1 and
xc/r0 ≪ 1, Eqs. (94) and (95) decouple and self-
modulation and the laser-hose instability can be analyzed

independently. The growth of the instabilities for a long
(L ≫ λp), optically-guided (P = PM ) laser pulse can
be analyzed by perturbing Eq. (95) about the matched-
beam equilibrium. Asymptotic growth rates can be ob-
tained in various regimes using standard methods. The
number of e-folds Ne = Γc,sτ in the various regimes are
given by (Esarey et al., 1994; Sprangle et al., 1994):
Long pulse regime: kp|ζ|ZR/z ≫ 4α1Pc/P

Ne =
3
√

3

4

(

α2
P

Pc
kp|ζ|

z2

Z2
R

)1/3

, (98)

Intermediate regime: (α3/4)(P/Pc) ≪ kp|ζ|ZR/z ≪
4α1Pc/P

Ne =

(

α3
P

Pc
kp|ζ|

z

ZR

)1/2

, (99)

Short pulse regime: kp|ζ|ZR/z ≪ (α3/4)(P/Pc)

Ne =
3
√

3

4

(

α3
P

Pc
k2

p|ζ|2
z

ZR

)1/3

. (100)

For the laser-hose instability, α1 = α2 = α3 = 1. For self-
modulation, α1 =

√
2(2−P/Pc)

3/2 (
√

2 ≤ α1 ≤ 4), α2 =

2, and α3 =
√

2(2 − P/Pc)
−1/2 (1 ≤ α3 ≤

√
2). Hence,

the number of e-folds is a function of the dimensionless
parameters P/Pc, kp|ζ|, and z/ZR.

Some insight can be gained by comparing Ne for self-
modulation in the long-pulse regime to that of RFS in
the 4-wave nonresonant regime (discussed in Sec. VI.A).
Equations (91) and (98) indicate the self-modulation is
dominant provided k2

pr
2
0 ≪ k2

0/k
2
p. This supports the as-

sertion that self-modulation dominates in the 2D limit,
whereas RFS dominates in the 1D limit, roughly speak-
ing, when kpr0 ≫ k0/kp. These two growth rates, how-
ever, occur in different spatiotemporal regimes, hence,
comparison of the growth of self-modulation and RFS is
more complicated (Esarey et al., 2000).

To illustrate the behavior of the coupled self-
modulation and laser-hose instabilities, Eqs. (94) and
(95) are solved numerically (Sprangle et al., 1994). Con-
sider an initially uniform plasma with a 16 TW, 1 ps
laser pulse with wavelength λ = 1 µm and initial spot
size r0 = 60 µm (ZR = 1.1 cm) in a plasma of density
n0 = 1.2 × 1018 cm−3 (λp = 30 µm). For these param-
eters, P (ζ) = Pc at the center of the pulse. Initially,
x̂s = ŷs = 1 and the centroid has a 1% random pertur-
bation such that |∂ lnxc/∂ζ| ≪ 1/λ0.

As the laser propagates, the high intensity center of
the pulse remains guided (x̂s ≃ 1). However, the front
and back portions of the pulse, with P < Pc, diffract,
and the coupled hose and modulation instabilities grow
within the guided portion of the pulse as illustrated in
Figs. 35 and 36. Figure 35 shows the normalized laser in-
tensity on-axis |â|2 = 16P (ζ)/(Pcx̂sŷsk

2
pr

2
0) at τ̂ = 0 and

at τ̂ = 3.2. Figure 36 plots x̂s(ζ) and x̂c(ζ) at τ̂ = 3.2
and shows a significant level of hosing, with |x̂c| as large
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as 0.5. In addition to the modulation of the envelope at
λp, the second harmonic at λp/2 is present, indicating
the coupling between the hose and self-modulation in-
stabilities. The spatial modulation of the laser envelope
at λp/2 is due to the dependence of the driving terms
on the centroid motion. The second harmonic is not
observed when the initial centroid perturbation is suf-
ficiently small, 0.1% for the present parameters.

The presence of the laser-hose instability can strongly
modify the structure of the wakefield generated by the
laser pulse. To illustrate this point, consider an ini-
tial centroid perturbation of 10% (Sprangle et al., 1994).
Here, the centroid motion dominates both the develop-
ment of the wakefield and the evolution of the envelope.
The spot size modulations are dominated by the second
harmonic component. Figure 37 shows the transverse
profiles of both the longitudinal and transverse wake-
fields, at τ̂ = 1.8, near the back of the pulse. The trans-
verse field Ex is nearly symmetric and peaked on-axis
while the longitudinal field Ez is nearly antisymmetric
and vanishes on-axis. This wakefield symmetry is op-
posite to that which occurs without hosing, i.e., in the
absence of the hose instability, Ex is antisymmetric and
vanishes on-axis, while Ez is symmetric and peaked on-
axis.

Although the modulation instability can enhance the
wakefield amplitude and acceleration in the LWFA, the
laser-hose instability should generally be avoided. To
avoid significant levels of hosing, the initial laser cen-
troid must be sufficiently smooth. Equations (98)–(100)
indicate that the growth of the hose instability can be
reduced by decreasing the pulse length (kp|ζ|), the laser
power (P/Pc), or the interaction distance (cτ/ZR). Fur-
ther simulations (Sprangle et al., 1994) indicate that by
appropriately varying (i.e., detuning) either the plasma
density and/or the depth of the preformed plasma chan-
nel as a function of ζ in the laboratory frame, the laser-
hose and self-modulation instability can be substantially
reduced.

VII. HIGH QUALITY BUNCH PRODUCTION

As described in the previous sections, a decade worth
(1994-2004) of experiments by many groups demon-
strated that, by focusing intense laser pulses onto a neu-
tral gas, relativistic electron bunches can be produced.
Typically, prior to 2004, the accelerated electron en-
ergy spectrum was characterized by an exponential or
Boltzmann-like distribution, with the majority of elec-
trons at modest energies (a few MeV). The total acceler-
ated charge was large (up to several nC), but the number
of electrons at high energy (tens of MeV) was an expo-
nentially small fraction of the total charge. Figure 38
shows an example of a typical exponential energy spec-
trum (Leemans, 2004). Over the years, the properties
of these bunches improved. For example, higher laser
pulse energies led to more charge and higher observed

maximum electron energies (up to a few hundred MeV)
(Mangles et al., 2005). Conversely, electron bunches
were produced with “smaller” lasers, capable of operat-
ing at higher repetition rate (Malka et al., 2002). Laser
pulse shape effects were studied (Leemans et al., 2002;
Schroeder et al., 2003a), and applications were explored
such as radio-isotope production (Ledingham et al., 2003;
Leemans et al., 2001; Santala et al., 2001b), THz radia-
tion generation (Leemans et al., 2003; Schroeder et al.,
2004), x-ray generation (Catravas et al., 2001; Esarey
et al., 2002; Leemans et al., 2000; Rousse et al., 2004),
and ultrafast chemistry (employing the ultrafast nature
of the electron bunches) (Brozek-Pluskab et al., 2005).
Although steady progress was made, the 100 percent elec-
tron beam energy spread remained a major limitation.

A. High quality bunches at the 100 MeV level

In 2004 a major milestone was achieved with the
production and measurement of high quality electron
bunches. Three different groups [located at the Ruther-
ford Appleton Laboratory (RAL) in the United King-
dom, Lawrence Berkeley National Laboratory (LBNL)
in the United States, and the Laboratoire d’Optique
Appliquée (LOA) in France] announced measurement of
electron bunches with narrow energy spread containing a
significant amount of charge in a bunch with a small di-
vergence (Faure et al., 2004; Geddes et al., 2004; Mangles
et al., 2004). In the case of the LBNL experiments (Ged-
des et al., 2004), this was accompanied by the achieve-
ment of another major milestone: the guiding of relativis-
tically intense (> 1018 W/cm2) laser pulses within pre-
formed plasma channels (Geddes et al., 2005b) and the
self-trapping and acceleration of electrons within these
channels (Geddes et al., 2005b). Guiding of high inten-
sity laser pulses in plasma channels is necessary in order
to extend the acceleration length and the energy gain up
to the multi-GeV range with reasonable size laser systems
that can operate at high repetition rates.

To obtain the mono-energetic bunches, the RAL and
LOA groups used relatively large laser spot sizes. This
effectively increases the diffraction (or Rayleigh range,
ZR) of the laser pulse, thereby permitting propagation
over distances on the order of the gas jet length. The
RAL collaboration used a 16 TW, 40 fs laser pulse fo-
cused (25 µm spot size, 1018 W/cm2) on a plume of a gas
jet with a plasma density of 2 × 1018 cm−3. A narrow
energy spread bunch was observed at 78 ± 2 MeV with
20 pC of charge (Mangles et al., 2004). The LOA exper-
iments used a 30 TW, 33 fs laser pulse focused (18 µm
spot size, 3 × 1018 W/cm2) on a plume of a gas jet with
a plasma density of 6 × 1018 cm−3. A narrow energy
spread bunch was observed at 170±15 MeV with 500 pC
of charge (Faure et al., 2004). Plasma density scans in-
dicated that there was an optimal laser-plasma coupling
parameters for production of high-charge mono-energetic
electron beams, as predicted in the bubble regime, and in
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agreement with 3D PIC simulations (Faure et al., 2004;
Malka et al., 2005).

The LBNL experiments used a 9 TW, 55 fs laser pulse
focused to a relatively tight spot size (8.5 µm FWHM,
1019 W/cm2). To mitigate the short ZR of the laser
pulse, a preformed plasma channel (with an on-axis den-
sity of 2 × 1019 cm−3) was used to guide the laser pulse
through the gas jet. A narrow energy spread bunch was
observed at 86 ± 2 MeV with 300 pC of charge within
the narrow peak. Electrons with energies as high as
150 MeV were observed. With the preformed channels
and laser input powers at the 8–10 TW level, electron
bunches with narrow energy spread were observed (Ged-
des et al., 2004). Using the 55◦ fine resolution magnetic
spectrometer, bunches containing 2 × 109 electrons with
two percent energy spread around 86 MeV were observed
with a divergence on the order of 3 mrad. Bunches con-
taining 109 electrons at energies between 135–170 MeV
were observed using the 5◦ port of the magnetic spec-
trometer. An example of a narrow energy spread spec-
trum is shown in Fig. 39. The normalized geometric
emittance, obtained from assuming that the bunch comes
from a source approximately the size of the laser spot, is
1–2 π mm-mrad, competitive with state of the art radio-
frequency facilities.

Based on experiment, simulation, and theory, the pro-
duction of monoenergetic bunches in a laser-plasma ac-
celerator requires the following four steps: Step 1 consists
of exciting a wakefield. For a self-modulated LWFA, this
typically occurs after the laser has propagated a suffi-
ciently long distance within the plasma, such that the
self-modulation instability (i.e., the feedback of the wake
on the pulse and the self-consistent evolution of both the
wake and the pulse) excites a large amplitude wakefield.
Step 2 consists of a method for trapping and the ini-
tial injection of the electrons into the wake. For a self-
modulated LWFA, this can be the result of wake wave-
breaking (i.e., sufficiently large plasma wave amplitude
for self-trapping of background electrons). Step 3 con-
sists of termination of the self-trapping or injection pro-
cess. If trapping is not terminated, low energy electrons
would continuously be injected into the wake over the
entire length of acceleration, resulting in a large energy
spread. One mechanism to accomplish this is by beam
loading, i.e., the injected electron bunch is of sufficient
charge so as to reduce the amplitude of the wake below
the self-trapping threshold. Step 4 is acceleration of the
electron bunch over a distance equal to the dephasing
length. If acceleration occurs over distances longer than
the dephasing length, the trapped bunch will continue
to circulate around the separatrix, losing energy and in-
creasing its energy spread. Optimum acceleration would
occur over a distance equal to the dephasing length, such
that the trapped bunch exits the plasma near the top of
the separatrix (i.e., the accelerating phase-space bucket),
with maximum energy and minimum energy spread.

Particle-in-cell simulations (using the code VORPAL
(Nieter and Cary, 2004)) were performed in parameter

regimes relevant to the LBNL experiments (Geddes et al.,
2004). The simulated laser envelope and particle phase
space as a function of propagation distance are shown in
Fig. 40, and the wake density is shown in Fig. 41. In
these simulations (Geddes et al., 2005b), it is observed
that in the first few hundred microns of propagation of
the laser pulse in the channel, the wake amplitudes (and
hence the amount of trapped particles) are small. As the
laser pulse envelope starts distorting through the self-
modulation instability, developing features that have rise
times on the order of or shorter than the plasma period,
a plasma wake is excited that is large enough to trap and
accelerate particles. Once enough charge is accumulated
in the accelerating bucket, the injection process can be
terminated due to beam loading, i.e., the field of the ac-
celerated bunch modifies the wakefield and reduces its
amplitude to below the trapping threshold. Pump deple-
tion of the laser pulse energy (lost to wake excitation)
can also reduce the wake amplitude below the trapping
threshold. If the trapped electrons propagate beyond a
dephasing distance, the electrons lose energy, which leads
to a broad energy distribution.

B. High quality bunches at the 1 GeV level

In 2006, high quality electron bunches at the 1 GeV
level were demonstrated in channel-guided LWFA exper-
iments at LBNL [Ref]. In these experiments, the energy
gain was extended the the GeV range by using higher
laser powers (e.g., 40 TW), using longer plasma channels
(e.g., 3.3 cm), and using lower plasma densities (e.g., 1018

cm−3) so as to extend the dephasing length. Previous
LBNL experiments at the 100 MeV level created plasma
channels in a gas jet with a laser ionization and heating
technique (Geddes et al., 2004, 2005b; Volfbeyn et al.,
1999). Due to laser heating being inefficient at low den-
sities, suitable plasma channels could only be produced
in gas jets at densities > 1019 cm−3, limiting the dephas-
ing length and restricting electron energies to about 100
MeV.

To overcome the limitations of gas jets, a gas-filled cap-
illary discharge waveguide (Butler et al., 2002; Spence
and Hooker, 2001) was used to produce cm-scale, lower
density plasma channels. The experiments used a 10 Hz
repetition rate Ti:sapphire laser system (λ = 810 nm) de-
livering down to 40 fs full width half maximum (FWHM)
pulses with up to 40 TW peak power. These pulses were
focused by a 2 m focal length off-axis parabola (f/25) to
rs = 25 µm at the capillary entrance (an input intensity
∼ 1018 W/cm2). The capillaries (Spence and Hooker,
2001) were laser machined into 33 mm long sapphire
blocks with diameters ranging from 190 µm to 310 µm.
Hydrogen gas, introduced through two holes near the
capillary ends, was ionized by striking a discharge be-
tween electrodes at the capillary ends, producing an ap-
proximately parabolic plasma channel. Accelerator per-
formance was optimized by adjusting the initial gas den-
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sity and the delay between onset of the discharge current
and arrival of the laser pulse (from 1.0 to 4.0×1018 cm−3

in a ∼100 ns timing window). Electron bunch energy was
measured by a 1.2 T single-shot magnetic spectrometer
that deflected the electrons onto a 1.2 m long phosphor
screen, covering energies from 0.03 GeV up to 1.1 GeV.

Figure 42 shows energy spectra of electron bunches
produced at (a) 0.5 GeV with ∼50 pC charge, and at (b)
1.0 GeV with ∼30 pC charge, obtained using 12 TW (70
fs input) and 38 TW (40 fs input) laser pulses, respec-
tively. In both cases the electron bunches had percent-
level energy spread and a divergence of 1.2–2.0 mrad
(rms).

Bunches at ∼0.5 GeV were obtained using a 225 µm
diameter capillary for a density of 3.4 to 4.3×1018 cm−3

and for laser power ranging from 12 TW (70 fs) to 18
TW (40 fs). The performance for the 225 µm diameter
capillary-guided accelerator was found to be reproducible
for delays of 70–120 ns and 12 TW laser peak power, with
every laser shot resulting in an electron bunch at 0.5 GeV
±10% and an rms spread <5%. Fluctuations in electron
bunch energy were directly correlated with those in laser
power. For lower power (<12 TW), no electron bunches
were observed suggesting that the wake amplitude was
below the self-trapping threshold.

The GeV electron bunch was obtained in a 310 µm di-
ameter channel capillary for P = 38 TW and a density of
4.9 × 1018 cm−3. In this larger diameter channel, trans-
verse wakefields are reduced but the guiding properties
are less ideal as it requires a larger matched spot size
than was injected. For lower laser power (<38 TW), no
electron bunches were observed. For higher laser powers,
the spectrum always showed structure with significant
shot-to-shot fluctuations due in part to the self-trapping
mechanism being sensitive to small variations in the laser
and plasma parameters (Geddes et al., 2005b).

Particle-in-cell simulations in 2D and 3D confirm that
the injection and acceleration mechanism is similar to
that which occurs in the gas jet experiments at the 100
MeV level. The initial profile of the laser pulse injected
into the channel produces a wake with an amplitude that
is too low to produce self-trapping. Over the first few mm
of propagation, the wake feeds back on the laser pulse,
leading to self-modulation and self-steepening, which fur-
ther increases the wake amplitude. A blow-out or cavi-
tated wake is eventually produced of sufficient amplitude
so as to allow self-trapping. Trapping continues until
there is sufficient trapped charge so as to beam load the
wake, reducing its amplitude, and terminating the self-
trapping process. Over the next ∼ 1 cm of propagation,
the bunch accelerates as the laser energy depletes. Laser
depletion occurs after roughly a dephasing length, result-
ing in the production of narrow energy spread electron
bunch with an energy near 1 GeV.

C. High quality bunches from colliding pulse injection

In addition to stable electron bunches generated at
the 0.5 GeV level via self-trapping in the channel-guided
LWFA experiments described in the previous section, sta-
ble electron bunches at the 100 MeV level were also gen-
erated in 2006 by colliding pulse injection within a gas jet
in experiments at LOA (Faure et al., 2006). These exper-
iments used a two pulse, collinear, counterpropagating
geometry, in which injection results from the beat wave
produced when the backward pulse overlaps the forward
drive pulse that generates the wakefield (Fubiani et al.,
2004). Specifically, two 30 fs laser pulses with linear po-
larization were focussed at the edge of a 2 mm supersonic
helium gas jet. The pump pulse was focused to an inten-
sity of I0 = 3.4×1018 W/cm2 (a0 = 1.3) and the injection
pulse intensity was I1 = 4.3 × 1017 W/cm2 (a1 = 0.4).
The electron bunch was passed through an electron spec-
trometer, which measured the electron bunch angular
distribution, energy distribution and charge.

For densities at or below ne = 7.5 × 1018 cm−3, the
nonlinear evolution of the pump laser pulse through self-
focusing and self-steepening was not strong enough to
cause significant injection of electrons into the wakefield.
However, at ne = 7.5 × 1018 cm−3, the addition of the
injection pulse produced a monoenergetic electron bunch.
The electron bunches obtained in this manner were very
stable. A series of 20 consecutive shots was carried out to
estimate the statistical fluctuations of the bunch, giving
a peak energy of 117± 7 MeV, an energy spread of 11 ±
2%, a charge of 19 ± 6.8 pC, a divergence of 5.8 ± 2
mrad, and a pointing stability of 0 ± 1.8 mrad (here the
± signifies the standard deviation about the mean). By
varying the delay between the two pulses, the collision
point, and hence the acceleration length, within the gas
jet was varied. This allowed the electron bunch energy
to be tuned from 50 MeV (with 25% energy spread) to
250 MeV (with 5% energy spread). Furthermore, when
the polarizations of the two laser pulses were orthogonal,
no electron bunch was produced, which suggests that the
injection mechanism depends on parallel polarization and
the production of a beat wave.

D. High quality bunches from down ramp injection

Stable electron bunches at the 1 MeV level have been
demonstrated experimentally at LBNL by focusing a 10
TW, 50 fs laser (2 × 1019 W/cm2) on the downstream
edge of a 750 µm wide gas jet of density 2 × 1019 cm−3

(Geddes et al., 2007). The mechanism for self-trapping
of electrons from the background plasma is due to down
ramp injection, as discussed in Sec. IV.D. At the down-
stream edge of the gas jet, a decreasing plasma density
causes λp to increase with propagation. Wake fronts then
fall further behind the laser as it propagates, decreasing
the wake phase velocity to the point where background
plasma electrons become trapped.
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Using this method, stable (over hundreds of shots) elec-
tron bunches were produced with low absolute momen-
tum spread. Electron bunches were generated with or-
der nC charge (15% charge stability), mean momenta
0.76 MeV/c, 170 keV/c FWHM momentum spread,
20 keV/c momentum stability, 20 keV/c transverse mo-
mentum, and 2 mrad (2 keV/c) RMS pointing stability.
Examples of the momentum distribution of the bunch
as obtained from a magnetic spectrometer are shown in
Fig. 43. Furthermore, measurements of coherent THz
emission imply a bunch duration on the order of 100 fs.

One possible application of such a source would be
as an electron injector into a second stage (dark cur-
rent free) of a LWFA for acceleration to high energy.
Simulations predict that post acceleration of a highly
quality bunch can nearly preserve the absolute momen-
tum spread and emittance. Hence, post acceleration of
bunches produced by down ramp injection could poten-
tially lead to the generation of electron bunches at GeV
(or greater) energies with 100 keV/c level momentum
spread.

VIII. SUMMARY AND PROSPECTS

Perhaps the three most fundamental physics issues
concerning laser-plasma accelerators are (i) can an ul-
trahigh accelerating field be generated, (ii) can this ac-
celerating field be sustained over a sufficiently long prop-
agation distance so as to provide a substantial single-
stage electron energy gain, and (iii) can an ultrashort
electron bunch be injected and accelerated while main-
taining high bunch quality? Theory and simulation indi-
cate that these requirements can be met. Experimental
progress is proceeding at a rapid pace, and the generation
of ultrahigh accelerating fields, the guiding of high inten-
sity laser pulses over many diffraction (Rayleigh) lengths,
and the production of high quality relativistic electron
bunches have been demonstrated. Much of the experi-
mental success can be attributed to the development of
chirped-pulse amplification (Maine et al., 1988; Mourou
and Umstadter, 1992; Perry and Mourou, 1994; Strick-
land and Mourou, 1985), which has revolutionized laser
technology by providing compact sources of multi-TW,
sub-ps laser pulses. In the future, numerous accelerator
applications will benefit from high-average power sources
of intense laser pulses, which requires further technolog-
ical advances.

The problem of generating a large amplitude plasma
wave by an intense laser pulse, for the most part, is well-
understood. Theoretically, wakefield generation can be
examined by assuming a non-evolving drive laser pulse
and by calculating the plasma response to the pondero-
motive force. This ponderomotive force can be associated
with the envelope of a single laser pulse (e.g., a standard
LWFA in the linear regime or a bubble wake in the highly
nonlinear regime), a laser pulse train, envelope variations
on an unstable laser pulse (e.g., self-modulated LWFA),

or the beat wave produced by two co-propagating laser
pulses of different frequencies (e.g., PBWA). Wakefield
generation is optimized when the laser envelope spatial
gradients are on the order of the plasma wavelength λp.
Analytical solutions or simple numerical models exist in
the 3D linear regime (a2

0 ≪ 1) and in the 1D nonlinear
(a2 >∼ 1) regime. In the 2D and 3D nonlinear regime,
wakefield generation can be examined with a variety of
quasi-static fluid and particle-in-cell codes. Unresolved
theoretical issues pertaining to wakefield generation in-
clude the detailed study of wavebreaking, especially in
2D and 3D, dynamics of the highly nonlinear blowout
regime, wakefield decay in nonuniform plasmas, thermal
effects, and self-trapping.

Laser pulse propagation in underdense plasma is af-
fected by a variety of phenomena, including relativistic
self-focusing, ponderomotive self-channeling, preformed
density channels, plasma wave generation, pump deple-
tion, and instabilities, as discussed in Sects. V and VI. In
terms of fundamental limits to the energy gain in single-
stage LWFA, the most severe is typically diffraction, i.e.,
the Rayleigh length is usually much shorter than the de-
phasing length and pump depletion length. Hence, some
form of optical guiding is required. Relativistic self-
guiding, which occurs when P ≥ Pc ≃ 17λ2

p/λ
2 GW,

strongly affects the body of a long (L > λp) laser
pulse. The leading portion of the pulse (<∼ λp), how-
ever, will diffractively erode due to the self-consistent
response of the plasma density to the laser field. The
self-focusing of a long pulse can be enhanced by the
ponderomotive blowout of the plasma electrons from the
axis, i.e., electron cavitation. In addition, the body of
long, relativistically-guided pulse is subject to instabili-
ties (Raman scattering, self-modulation, and laser hos-
ing). Preformed plasma density channels are effective in
the guiding of short (L < λp) laser pulses when ∆n ≥
∆nc = 1/(πrer

2
0). For long pulses (L > λp), relativistic

effects can reduce this criterion, i.e., ∆n/∆nc ≥ 1−P/Pc.
In addition, if the pulse is sufficiently short (L <∼ λp),
the detrimental effects of various instabilities may be re-
duced, owing to the reduced growth of the unstable mode
within the pulse.

Once diffraction is overcome and the laser pulse is
guided by, for example, a plasma density channel, the
propagation distance will be limited by a variety of non-
linear phenomena. For example, a laser pulse on the or-
der of or longer than a plasma wavelength will undergo
self-modulation, generally defined as the pulse evolution
resulting from the feed back of the plasma wave (wake-
field) on the laser pulse. For a long laser pulses, L≫ λp,
self-modulation can lead to an unstable axial modulation
of the pulse profile at λp, with the associated excitation
of a large wakefield that can grow to the point of wave-
breaking, resulting in electron self-trapping and acceler-
ation. For shorter pulses, L ∼ λp, self-modulation can
still play a dramatic role via pulse shortening and self-
steepening. For example, as a pulse with L ∼ λp enters
a plasma, the initial intensity profile may only drive a
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mildly nonlinear wake, but as this wake feeds back on
the laser pulse, the intensity profile shortens and steep-
ens, which can result in a highly nonlinear wake and the
self-trapping of electrons. Hence, self-shortening and self-
steeping can play an important role in the transition of
a mildly nonlinear wake to a highly nonlinear blowout
regime. Furthermore, the physics of self-modulation is
intrinsically coupled to that of pump depletion, since as
the laser pulse excites the plasma wave, it loses energy.
Analytic studies of laser pulse evolution, for the most
part, are limited to the linear regime in which, for exam-
ple, analytic expressions for instability growth rates are
readily obtained. The self-consistent problem of plasma
wave generation by an evolving drive laser pulse is typi-
cally of sufficient complexity as to require numerical sim-
ulation. Self-consistent simulations of laser-plasma accel-
erators have been performed in the 2D and 3D nonlinear
regime using both fluid and particle-in-cell codes.

To generate a high-quality electron bunch, it is highly
desirable that a bunch be injected with a length short
compared to λp. Due to the shortness of λp (<∼
100 µm), this is not yet achievable using conventional
photo-injectors, in which the production of femtosec-
ond bunches is problematic. Alternatively, several novel
laser-based methods for injecting electrons into a plasma
wave have been proposed and studied. This is includes
self-trapping of background plasma electrons, which can
occur as the plasma wave amplitude approaches the
wavebreaking amplitude for both long laser pulses, such
as in the self-modulated regime, or for short laser pulses,
as in the blowout regime. In a plasma channel, curva-
ture of the plasma wavefronts becomes more severe with
distance behind the laser pulse and can lead to wave-
breaking. A density downramp causes the phase velocity
of the plasma wave to decrease, which can lead to wave-
breaking at a sufficiently far distance behind the pump
laser pulse. Instead of relying on wavebreaking and self-
trapping, one or more additional ultrashort (short com-
pared to λp) laser pulses can be used to injection electrons
directly into the wakefield. This can be done by either
using the ponderomotive force of the injection pulse, or
the slow beat wave generated by two counterpropagating
laser pulses. These laser injection methods show great
promise, since the injection process can be controlled in
detail by adjusting the timing of the injection pulses with
respect to the plasma wave phase, as well as by adjust-
ing the injection pulse amplitude and duration. Once
injected, it is important that the electron bunch be accel-
erated while maintaining high quality, e.g., maintaining
a small energy spread and emittance. This may require
controlling the transverse focusing forces of the wakefield
by, for example, tailoring the transverse plasma density
profile and/or the transverse laser intensity profile.

Experimentally, many groups have measured ultrahigh
accelerating fields and accelerated electrons. Large accel-
erating fields (>200 GV/m ) have been measured directly
from optical probing techniques or inferred from the mea-
surement of accelerated electrons. Large amounts of self-

trapped electrons (up to several nC) have been accel-
erated in the self-modulated LWFA regime, with maxi-
mum electron energies up to a few hundred MeV. Prior
to 2004, however, the electron energy spectrum in the
self-modulated regime was typically characterized by an
exponential distribution with the majority of the elec-
trons at low energy (∼ MeV) and a long tail extending
out to high energies, e.g., > 300 MeV when using PW-
level Nd:glass laser system and a 2 mm diameter gas jet
(Mangles et al., 2005). Such an exponential energy dis-
tribution of the accelerated electrons is typical of this
first-generation of “brute force” experiments, in which a
single high power (> few TW) laser pulse interacts with
a gas jet plume of a couple of mm diameter and of rela-
tively high density (∼ 1019 cm−3).

Two important experimental milestones towards the
development of a laser-plasma accelerator were achieved
in 2004: channel guiding of relativistically intense (a2

0
>∼

1) laser pulses over many diffraction lengths (Geddes
et al., 2004), and the production of high quality elec-
tron bunches at relativistic energies (∼ 100 MeV), with
high charge (up to ∼ nC), low energy spread (∼ few
percent) and low normalized emittance (∼ π mm-mrad)
(Faure et al., 2004; Geddes et al., 2004; Mangles et al.,
2004). These results were obtained by a careful choice
of laser and plasma parameters and/or a tailoring of the
plasma density profile. In these experiments the electrons
were self-trapped by the 10-100 TW laser pulse from the
background plasma using mm-scale gas jet sources. High
quality bunches were obtained by controlling the acceler-
ation length so that it was equal to the dephasing length,
such that the trapped bunch exits the plasma near the
top of the separatrix (i.e., the accelerating phase-space
bucket), with maximum energy and minimum energy
spread. Matching of the acceleration length and the de-
phasing length was accomplished by either using a pre-
formed plasma channel (Geddes et al., 2004), or by us-
ing higher power laser pulses with larger laser spot sizes
(which increases the propagation length) (Faure et al.,
2004; Mangles et al., 2004), along with lower plasma den-
sities (which increases the dephasing length). In 2006
high quality electron bunches were produced at the 1
GeV using 100 TW level laser pulses in a cm-scale plasma
channel. Again, the electrons were self-trapped from
the background plasma (a capillary discharge), and high
quality bunches were obtained by acceleration over a de-
phasing length (Leemans et al., 2006).

Another important experimental milestone was
achieved in 2006: controlled injection and acceleration
of electrons using the colliding pulse method (Faure
et al., 2006). High quality electron bunches at the
100 MeV level were generated with multi-10 TW laser
pulses in a mm-scale gas jet using a two pulse, collinear,
counterpropagating geometry. When the polarizations
of the two laser pulses were orthogonal, no electron
bunch was produced, which suggests that the injection
mechanism depends on parallel polarization and the
production of a laser beat wave.
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Although not the focus of this review article, an im-
portant experimental milestone in the field of electron
beam-driven plasma-based accelerators was achieved in
2007 (Blumenfeld et al., 2007): the energy doubling of a
significant fraction of electrons in a multi-10 GeV elec-
tron bunch using a meter-scale plasma. These experi-
ments used the 50 fs, 42 GeV electron bunches from the
3 km long linear accelerator at the Stanford Linear Ac-
celerator Center, propagating through a 85 cm plasma.
The front portion of the electron bunch generated a large
amplitude plasma wakefield, which subsequently acceler-
ated electrons in the tail of the bunch to energies as high
as 85 GeV.

Although much progress has been made, in many re-
spects laser-plasma accelerator experiments are still in
their infancy. One important challenge is to stabilize the
performance of the accelerator. Since the electron energy
depends linearly on laser intensity in the linear wakefield
regime [see, e.g., Eq. (45)], stable electron bunch ener-
gies to the few percent level requires control of the laser
pulse energy, pulse length, and spot size is needed at the
few percent level. Novel methods for controlling laser
pulse properties and pointing stability are being devel-
oped in industry for short pulse systems that may meet
these requirements. Similarly, plasma densities must be
controlled at the percent level to ensure that the wake
amplitude (∝ n1/2), dephasing length (∝ n−3/2), and en-
ergy gain (∝ 1/n) remain constant. Novel time-resolved
diagnostics need to be developed and implemented to al-
low, for example, measurement of the slice emittance and
energy spread of fs-duration electron bunches.

Perhaps the most severe fundamental limit to the
single-stage energy gain in a laser-plasma accelerator is
pump depletion, i.e., energy is transferred out of the laser
pulse and into the plasma wakefield as the laser propa-
gates. In the nonlinear regime, theory and simulation
indicate that the pump depletion length is on the order
of the dephasing length. To extend the electron energy
beyond the limits of pump depletion will require multi-
ple stages. This requires additional challenges such as the
synchronization of laser pulses with fs accuracy, the align-
ment of plasma structures with micron accuracy, and the
development of novel methods of laser coupling into sub-
sequent stages.

One possible approach to the realization of an all-
optical accelerator at the 10 GeV level is to use two
stages. The first could be an injector at the 100 MeV
level that utilized either self-trapping or a laser triggered
injection method such as colliding pulse. This electron
bunch could then be injected into a second stage that
would accelerate the bunch through a plasma channel in a
mildly nonlinear wakefield regime without additional self-
trapping (dark current free). Estimates based on linear
wakefield theory predict a maximum single-stage energy
gain on the order of ∆W (GeV) ≃ I0(W/cm

2
)/n0(cm

−3).
Hence, a second stage that used a few hundred fs laser
pulse with an intensity of 1018 W/cm2 in a plasma of den-
sity 1017 cm−3 may provide a single-stage energy gain as

high as 10 GeV. As can be seen from the basic scaling
laws, reducing the density and lengthening the distance
over which the plasma channel extends is essential to
reach multi-GeV energies.

The performance of laser-plasma accelerators, as well
as essentially all applications of these accelerators, would
benefit greatly from improvements in laser technology:
higher peak powers, higher pulse energies, higher repeti-
tion rates, and the development of higher average power
laser systems. Currently, 100 TW laser systems are lim-
ited to the 10 Hz regime (average powers on the order of
10 W). As a simple estimate of the type of laser pulses
needed to drive a high charge, single-stage accelerator,
consider producing a 10 GeV electron bunch containing
1 nC of charge (6 × 109 electrons). This represents 10 J
worth of electron kinetic energy and, assuming a laser to
particle beam efficiency between 1–10%, requires there-
fore 100–1000 J of laser energy per pulse. It is hence es-
sential that plasma accelerator technology and laser tech-
nology be developed in parallel, if the goal of all-optical
linear accelerators is to be realized. Such an accelerator
holds the promise of offering unique electron bunches,
having femtosecond duration and containing 100’s of pC
of charge, with an emittance that equals or surpasses
conventional linacs. If the development continues to be
successful, it will serve as a compact multi-GeV module
for high energy physics applications, as well as the basis
for novel radiation sources, including the next generation
of femtosecond light sources.
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Geddes, C. G. R., C. Tóth, J. van Tilborg, E. Esarey, C. B.
Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P.
Leemans, 2005b, Phys. Plasmas 12, 056709.

Gibbon, P., and A. R. Bell, 1988, Phys. Rev. Lett. 61(14),
1599.

Gorbunov, L., P. Mora, and T. M. Antonsen, Jr., 1996, Phys.
Rev. Lett. 76(14), 2495.

Gorbunov, L. M., and V. I. Kirsanov, 1987, Sov. Phys. JETP
66, 290.

Gorbunov, L. M., P. Mora, and T. M. Antonsen, Jr., 1997,
Phys. Plasmas 4(12), 4358.

Gordienko, S., and A. Pukhov, 2005, Phys. Plasmas 12,
043109.

Gordon, D., K.-C. Tzeng, C. E. Clayton, A. E. Dangor,
V. Malka, K. A. Marsh, A. Modena, W. B. Mori, P. Mug-
gli, Z. Najmudin, D. Neely, C. Danson, et al., 1998, Phys.
Rev. Lett. 80(10), 2133.

Gordon, D. F., B. Hafizi, P. Sprangle, R. F. Hubbard, J. R.
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FIGURES

(a)

(c) (d)

(b)

FIG. 1 Schematic of laser-driven plasma-based accelerators:
(a) laser wakefield accelerator (LWFA), (b) plasma beat wave
accelerator (PBWA), (c) self-modulated laser wakefield accel-
erator (SM-LWFA), and (d) resonant laser pulse train. Shown
are the excited plasma wave potentials (solid lines) and right-
moving laser intensity envelopes (dashed lines).
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FIG. 2 Single particle orbits in phase space (u, kpζ) for an
electron in a small amplitude, sinusoidal plasma wave with
a normalized potential given by φ = φ0 cosψ, with γϕ = 10
and φ0 = 10−2. Solid curve is separatrix. Dashed curve is the
cold fluid orbit. Excitation of the plasma wave by a laser pulse
with a half-sine envelope of length λp/2 (head at kpζ = 0) is
assumed.

FIG. 3 Phase-space separatrix γs(ψ) plotted for several values
of the plasma wave amplitude ǫ = 0.03, 0.04, 0.1, 0.3, and
0.9 (ǫ = 1 corresponds to the cold wavebreaking limit), with
γp = 20. The value ǫ = 0.03 corresponds to the innermost
curve and ǫ = 0.9 corresponds to the outermost curve.
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FIG. 4 Schematic of laser pulse frequency upshifting by a
plasma wave with vp ≃ vg ≃ c (pulse moving to the right).
Positive frequency shifts require the laser pulse a to be cen-
tered about regions of the plasma wave (δn = n− n0) with a
decreasing density.
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FIG. 5 Density variation δn/n0 (dashed curve) and axial elec-
tric field Ez/E0 (solid curve) in an LWFA driven by a Gaus-
sian laser pulse (pulse is moving to the right, centered at
kpζ = 0 with rms intensity duration k−1

p ), for (a) a0 = 0.5
and (b) a0 = 2.0.
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FIG. 6 Plasma density n/n0 (dotted curve), plasma wave
electric field Ez/E0 (solid curve), and plasma temperature
T/T0 (dashed curve) excited by a Gaussian laser pulse with
normalized intensity a = 2 and RMS length kpLRMS = 1
(centered at kpξ = 0).
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FIG. 7 Maximum plasma wave electric field amplitude
Êmax = Emax/E0 [Eq. (22)] versus initial temperature β2

th

with γϕ = 10 and γ⊥ = 1. The dotted curve is the ultra-
relativistic result βϕ = 1, and the dashed line is the cold
limit.
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FIG. 8 Amplitude of axial electric field Ez [normalized to
the maximum amplitude of a flat-top pulse EN = a2

0/(1 +

a2
0/2)

1/2] plotted as a function of laser pulse length kpL for
the LWFA examples shown in Fig. 5: a0 = 0.5 (solid curve)
and a0 = 2.0 (dashed curve). The laser pulse envelope is
given by a = a0 exp(−ζ2/4L) such that L is the rms of the
laser intensity.



50

(a)

(b)

FIG. 9 Examples of PBWA consisting of four beat pulses with
a0 = 1.2 in a plasma of density n0 = 1016 cm−3: (a) without
optimization ∆ω = ωp, showing the effects of detuning, and
(b) with optimization ∆ω < ωp. Normalized intensity profile
a2 (solid curve), wake potential φ (dotted curve), and axial
field Ez/E0 (dashed curve) versus t− z/c. Pulses are linearly
polarized (moving to the left).

m=1

aT
2

FIG. 10 Maximum electric field amplitude Ez/E0 versus
a2

T = ma2
0, for m = 1, 3, 5, 10, and 100 optimized square

laser pulses with a0 = 1.

FIG. 11 Laser pulse train consisting of four optimized sine-
shaped laser pulses with a0 = 1.2 and n0 = 1016 cm−3. Nor-
malized intensity profile a2 (solid curve), wake potential φ
(dotted curve), and axial field Ez/E0 (dashed curve) are plot-
ted versus the comoving variable t− z/c. Pulses are linearly
polarized (moving to the left).

FIG. 12 Ambient plasma density np/n0 (solid curve) and
spot size rs/λp (dashed curve) versus normalized propaga-
tion distance cτ/ZR for a self-modulated LWFA with n0 =
2.8 × 1018 cm−3. Laser is initially converging such that the
minimum spot size in vacuum is reached at cτ = 3ZR.
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(a)

(b)

FIG. 13 (a) Peak accelerating field and (b) peak energy of
the injected particles versus propagation distance cτ for the
standard LWFA (dashed curve) with n0 = 1.4 × 1017 cm−3

and the self-modulated LWFA (solid curve) with n0 = 2.8 ×
1018 cm−3.

(a)

(b)

FIG. 14 Normalized laser intensity |a|2 for the self-modulated
LWFA case at (a) cτ = 2ZR and (b) cτ = 3.2ZR. Laser pulse
is moving to the right.

(a)

(b)

FIG. 15 (a) Axial electric field Ez and (b) normalized plasma
electron density n/n0 versus ζ at cτ = 3.2ZR for the self-
modulated LWFA case.
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FIG. 16 Electron density wake from an electron beam with
energy 0.5 GeV, density nb = 10n0, rms longitudinal beam
size k2

pσ
2
z = 2 (Gaussian longitudinal profile), and rms trans-

verse beam size k2
pσ

2
x = 2 (Gaussian transverse profile). The

electron beam is moving toward the right with its center lo-
cated at kpz = 454 in a plasma of density n0 = 5×1017 cm−3.
Numerical parameters: 25 particles per cell and a transverse
and longitudinal cell size of 0.33 µm.
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FIG. 17 Electron density wake from a laser pulse with a0 =
0.35, rms length 100 µm (half-sine longitudinal profile), spot
size r0 = 10 µm (Gaussian transverse profile), and wavelength
λ = 0.8 µm. The laser is moving toward the right (peak
located at kpz = 4.9) in a plasma of density n0 = 8 × 1015

cm−3 (λp = 300 µm). Numerical parameters: 4 particles per
cell, 24 cells per laser wavelength longitudinally, and 6 cells
per laser wavelength transversely.
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FIG. 18 Electron density wake at (a) ωpt = 127 and (b)
ωpt = 633 driven by a laser pulse with an initial envelope a =
a0 exp(−z2/L2) exp(−x2/r20) with a0 = 5, L = 6 µm, r0 =
9 µm and λ = 0.8 µm. The laser is propagating to the right
in a plasma of density density n0 = 7×1018 cm−3. Numerical
parameters: longitudinal cell size dz = λ0/50, transverse cell
size dx = λ0/3.2 = r0/36 = λp/50, and 9 particles per cell.
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FIG. 19 (a) Longitudinal electric field and (b) transverse elec-
tric field, normalized to E0, as a function of kpz and kpx, for
the parameters of Fig. 18(a) at ωpt = 127.
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FIG. 20 Lineouts of (a) longitudinal electric field on axis (b)
and transverse electric field at kpdz = 113, for the parameters
of Fig. 18(a) at ωpt = 127.
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FIG. 21 Initial electron momentum p̃t required to be trapped
by a plasma wave with field amplitude Epeak/E0 and phase
velocity γϕ = 5 (dotted curve), γϕ = 10 (solid curve), γϕ = 20
(dashed curve), and βϕ = 1 (dash-dotted curve), assuming an
initial plasma temperature βth = 10−2.
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FIG. 22 Fraction of trapped electrons ftrap [Eq. (55)] versus
the initial temperature of a Gaussian plasma electron distri-
bution β2

th = kBT0/mc
2 for three different nonlinear plasma

wave amplitudes driven by a laser with kpLRMS = 1 and

a0 = 3.65 (Êm ≃ 1.75), a0 = 4.15 (Êm ≃ 2), and a0 = 4.75

(Êm ≃ 2.25), with γϕ = 10.
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FIG. 23 Profiles of the pump laser pulse a0, the wake φ, and
the forward a1 injection pulse, all of which are stationary in
the ψ = kp(z − vpt) frame, and the backward injection pulse
a2, which moves to the left at ≃ 2c.
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FIG. 24 Longitudinal phase space showing beat wave separa-
trices, an untrapped plasma wave orbit (solid line), a trapped
plasma wave orbit (dotted line), and a trapped and focused
plasma wave orbit (dashed line).
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FIG. 25 Electron distribution in longitudinal (uz, ψ) phase
space (a) before injection pulse collision (ωp∆t = 0), (b) dur-
ing collision (ωp∆t = 3), (c) just after collision (ωp∆t = 14),
and (d) at ωp∆t = 114 (38 MeV electron bunch with 1 fs
duration, 0.2% energy spread, and 0.9 mm-mrad normalized
transverse emittance). The separatrix between trapped and
untrapped wake orbits (solid line) is shown.
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FIG. 26 Laser spot size rs versus normalized propagation
distance cτ/ZR for (a) vacuum diffraction, (b) L = λp/4,
and (c) L = λp, with parameters P = Pc, a0 = 0.9, and
λp = 0.03 cm. (d) Guiding of L = λp pulse in a preformed
parabolic plasma density channel with ∆n = 1/(πrer

2
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FIG. 27 Laser spot size rs versus propagation distance cτ for
(a) a channel-guided LWFA, (b) a tailored-pulse LWFA, (c)
vacuum diffraction, and (d) the self-modulated LWFA shown
in Figs. 13–15.

FIG. 28 Plasma electron density n/n0 at cτ = 20ZR for a
channel-guided LWFA. Initial density profile is parabolic with
a depth ∆n = ∆nc = 1/(πrer

2
0).

FIG. 29 Axial electric field Ez on axis at cτ = 20ZR for
channel-guided LWFA shown in Fig. 28.

r s

rs

FIG. 30 Laser spot size versus propagation distance z = cτ in
vacuum (dashed curve) and in a plasma channel (solid curve)
located at 0.5 cm < z < 1.5 cm for a low-power P ≪ Pc

mismatched pulse.
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FIG. 31 Schematic of a generic experimental setup used in
laser-plasma-based accelerators. The laser beams are usually
produced by a CPA-based laser system. Plasma density pro-
files can be measured using a frequency-doubled probe beam
that comes orthogonal to the main drive beam. For single
beam experiments only the “main” or drive beam is used.
Guiding experiments based on formation of preformed chan-
nels via the ignitor-heater method use two additional laser
beams. One beam that co-propagates with the main drive
beam to ionize the gas emerging from the pulsed gas jet (ign-
itor beam) and a second to rapidly heat the plasma filament
via inverse Bremsstrahlung heating. The high peak power
laser beams are focused, using off-axis parabolic mirrors, onto
a high pressure pulsed gas jet, operating with a specific back-
ing pressure that can be varied to control the plasma density.
An integrating current transformer (ICT) is typically used to
measure the charge per bunch of the electron beam. A dipole
magnet permits electron beam energy distribution measure-
ments. Various optical and other types of detectors are used
to monitor laser beam, plasma, and secondary radiation (e.g.,
THz radiation, γ-rays, and neutrons).

FIG. 32 Mode images of laser propagation at 4 TW, or twice
the critical power for self focusing. The guided output mode
after 2.5 mm (> 10ZR) of propagation (b) is indistinguishable
from the input mode (a). The effect of the channel can be
seen by comparison to vacuum propagation over the same
distance where the output mode is severely diffracted (c). Self
guiding also does not maintain the spot over this distance
due to instability, and the output mode with gas jet on but
without the guide displays enhanced diffraction (d). Note
enlarged scale in (c) and (d).

FIG. 33 Schematic of focusing effects of an externally gener-
ated plasma wave on an initially uniform low-intensity laser
pulse.

xs

FIG. 34 Schematic of the hose-modulation instability showing
the laser pulse centroid xc and spot size xs.

FIG. 35 Normalized laser intensity |a|2 versus ζ/λp at cτ = 0
(dashed curve) and cτ = 3.2ZR (solid curve) for the parame-
ters λp = r0/2 = 30 µm. Laser is moving to the right.
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FIG. 36 Laser envelope xs (upper curve) and centroid xc

(lower curve) versus ζ/λp at cτ = 3.2ZR for an initial pertur-
bation of 1% in xc. Perturbations grow at λp = r0/2 = 30 µm.

FIG. 37 Transverse profiles of the axial wakefield Ez/E0

(solid curve) and the transverse wakefield Ex/E0 (dashed
curve) at cτ = 1.8ZR and ζ = −18λp for a hose-dominated
case.

FIG. 38 Electron energy spectrum dN/dE measured using a
double focusing imaging magnetic spectrometer. The spec-
trum was obtained by scanning the excitation current in the
magnet and measuring the intensity on a phosphor screen.
Each data point represents 10 shots. The spectrum is reason-
ably well approximated by a Boltzmann distribution with an
effective temperature of 4.6 MeV.

FIG. 39 Electron energy spectrum of a bunch produced by the
channel guided accelerator. The spectrum was obtained by
dispersing the electron beam with the 55◦ magnetic spectrom-
eter and recording the beam image on a phosphor screen im-
aged with a high resolution CCD-camera. The energy range
covered in this single shot is from 68–92 MeV and shows the
appearance of mono-energetic features, here with 3×109 elec-
trons in a bunch with energy spread of 4% FWHM at 78 MeV.
In the vertical (non-dispersive) plane, the divergence was near
3 mrad FWHM for this bunch.

FIG. 40 Particle-in-cell simulation momentum phase space
(top of each panel) and laser envelope (bottom of each panel)
as a function of propagation distance. The laser enters the
plasma (a), and is modulated by the plasma response, exciting
a wake and trapping electrons (b). If trapping turns off after
the initial bunch is loaded (see Fig. 41), the trapped electrons
are concentrated in energy at the dephasing length, forming
a high-energy, low-energy spread bunch (c) which dissipates
with further propagation (d).
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FIG. 41 Particle-in-cell simulation of electron density after
laser propagation of 875 µm (a) and 1117 µm (b). Just before
trapping in the first bucket behind the laser (a), the wake
structure is undisturbed and large in amplitude, allowing self-
trapping of electrons. When a bunch is trapped, the wake is
damped, suppressing further trapping and hence isolating the
initial bunch in phase space (b). The bunch is visible in (b)
as a small isolated green dot in the center of the first bucket,
with density comparable to the plasma density.
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FIG. 42 Single-shot electron bunch spectra of the capillary-
guided accelerator. The spectrometer did not utilize an input
slit, but the angular acceptance was limited by the trans-
port beam pipe. The uncertainty in central energy associated
with the finite acceptance angle is indicated. Examples are
shown of bunches at (a) 0.50+0.02

−0.015 GeV (5.6% rms energy
spread, 2.0 mrad divergence rms, ∼50 pC charge) and (b)
1.0+0.08

−0.05 GeV (2.5% rms energy spread, 1.6 mrad divergence
rms, ∼30 pC). The 0.5 GeV (1.0 GeV) bunch was obtained
in the 225 (310) µm capillary with a density of 4.3 × 1018

(4.9 × 1018) cm−3 and input laser power of 13 TW (38 TW).
The black stripe denotes the energy range not measured by
the spectrometer. In (b) a second bunch at 0.8 GeV is also
visible. Note that the energy spread and divergence are ob-
tained after including the imaging properties of the spectrom-
eter. The energy spread at 1 GeV may be less due limitations
on energy resolution at 1 GeV and the slight saturation of the
image.

FIG. 43 Momentum distributions obtained from a magnetic
spectrometer for electron bunches produced by a laser focused
in the plasma density downramp, showing stable bunches at
0.76 MeV/c with ±10% momentum spread and ±3% momen-
tum stability. Sequential single shot images are shown on the
left with the centroid (*) indicated with respect to the av-
erage (square) over 48 shots. Integrated magnetic spectrum
is shown on the right (vertical bar denotes the RMS charge
error) with the data points (blue) connected by a black line.


